Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (5) : 697-699    https://doi.org/10.1007/s11708-022-0843-7
NEWS & HIGHLIGHTS
Amino acid promoted hydrogen battery system using Mn-pincer complex for reversible CO2 hydrogenation to formic acid
Zupeng CHEN1(), Henrik JUNGE2(), Matthias BELLER2()
1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Leibniz-Institute for Catalysis, University of Rostock, Rostock 18059, Germany
2. Leibniz-Institute for Catalysis, Rostock 18059, Germany
 Download: PDF(546 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Zupeng CHEN,Henrik JUNGE,Matthias BELLER   
Online First Date: 02 November 2022    Issue Date: 28 November 2022
 Cite this article:   
Zupeng CHEN,Henrik JUNGE,Matthias BELLER. Amino acid promoted hydrogen battery system using Mn-pincer complex for reversible CO2 hydrogenation to formic acid[J]. Front. Energy, 2022, 16(5): 697-699.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0843-7
https://academic.hep.com.cn/fie/EN/Y2022/V16/I5/697
Fig.1  The reversible hydrogen battery based on the carbon neutral chemical storage and release of H2. (Left demonstrates conventional noble-metal systems for CO2 hydrogenation to formic acid, and H2 discharge from the dehydrogenation of formic acid. Right is the newly developed non-noble metal Mn-pincer complex system that can efficiently store and release H2 with permanently retained CO2.)
1 P Tans. Trends in atmospheric carbon dioxide. 2022-9-5, available at website of the National Oceanic and Atmospheric Administration
2 R Keeling. Carbon dioxide measurements. 2022-10-2, available at website of the Scripps Institution of Oceanography
3 W Zhang, Z Jin, Z Chen. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Advanced Science, 2022, 9(9): 2105204
https://doi.org/10.1002/advs.202105204
4 Z Huang, L Zhu, A Li. et al.. Renewable synthetic fuel: turning carbon dioxide back into fuel. Frontiers in Energy, 2022, 16(2): 145–149
https://doi.org/10.1007/s11708-022-0828-6
5 W Zhang, Y Hu, L Ma. et al.. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Advanced Science, 2018, 5(1): 1700275
https://doi.org/10.1002/advs.201700275
6 I Dutta, S Chatterjee, H Cheng. et al.. Formic acid to power towards low-carbon economy. Advanced Energy Materials, 2022, 12(15): 2103799
https://doi.org/10.1002/aenm.202103799
7 D Wei, R Sang, A Moazezbarabadi. et al.. Homogeneous carbon capture and catalytic hydrogenation: toward a chemical hydrogen battery system. JACS Au, 2022, 2(5): 1020–1031
https://doi.org/10.1021/jacsau.1c00489
8 D Wei, H Junge, M Beller. An amino acid based system for CO2 capture and catalytic utilization to produce formats. Chemical Science, 2021, 12(17): 6020–6024
https://doi.org/10.1039/D1SC00467K
9 K Sordakis, C Tang, L K Vogt. et al.. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chemical Reviews, 2018, 118(2): 372–433
https://doi.org/10.1021/acs.chemrev.7b00182
10 D Mellmann, P Sponholz, H Junge. et al.. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 2016, 45(14): 3954–3988
https://doi.org/10.1039/C5CS00618J
11 F Bertini, M Glatz, N Gorgas. et al.. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes. Chemical Science, 2017, 8(7): 5024–5029
https://doi.org/10.1039/C7SC00209B
12 A Dubey, L Nencini, R R Fayzullin. et al.. Bio-inspired Mn(i) complexes for the hydrogenation of CO2 to formate and formamide. ACS Catalysis, 2017, 7(6): 3864–3868
https://doi.org/10.1021/acscatal.7b00943
13 K Schlenker, E G Christensen, A A Zhanserkeev. et al.. Role of ligand-bound CO2 in the hydrogenation of CO2 to formate with a (PNP)Mn catalyst. ACS Catalysis, 2021, 11(13): 8358–8369
https://doi.org/10.1021/acscatal.1c01709
14 M Andérez-Fernández, L K Vogt, S Fischer. et al.. A stable manganese pincer catalyst for the selective dehydrogenation of methanol. Angewandte Chemie International Edition, 2017, 56(2): 559–562
https://doi.org/10.1002/anie.201610182
15 N H Anderson, J Boncella, A M Tondreau. Manganese-mediated formic acid dehydrogenation. Chemistry—A European Journal, 2019, 25(45): 10557–10560
https://doi.org/10.1002/chem.201901177
16 A Léval, A Agapova, C Steinlechner. et al.. Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights. Green Chemistry, 2020, 22(3): 913–920
https://doi.org/10.1039/C9GC02453K
17 D Wei, R Sang, P Sponholz. et al.. Reversible hydrogenation of carbon dioxide to formic acid using a Mn-pincer complex in the presence of lysine. Nature Energy, 2022, 7(5): 438–447
https://doi.org/10.1038/s41560-022-01019-4
18 G A Filonenko, R van Putten, E N Schulpen. et al.. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst. ChemCatChem, 2014, 6(6): 1526–1530
https://doi.org/10.1002/cctc.201402119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed