Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2023, Vol. 17 Issue (4) : 504-515    https://doi.org/10.1007/s11708-022-0855-3
RESEARCH ARTICLE
A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys
Yian LU1, Suxin QIAN2(), Jun SHEN3
1. Department of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049, China; Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. Department of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(5282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermal energy storage has been a pivotal technology to fill the gap between energy demands and energy supplies. As a solid-solid phase change material, shape-memory alloys (SMAs) have the inherent advantages of leakage free, no encapsulation, negligible volume variation, as well as superior energy storage properties such as high thermal conductivity (compared with ice and paraffin) and volumetric energy density, making them excellent thermal energy storage materials. Considering these characteristics, the design of the shape-memory alloy based the cold thermal energy storage system for precooling car seat application is introduced in this paper based on the proposed shape-memory alloy-based cold thermal energy storage cycle. The simulation results show that the minimum temperature of the metal boss under the seat reaches 26.2 °C at 9.85 s, which is reduced by 9.8 °C, and the energy storage efficiency of the device is 66%. The influence of initial temperature, elastocaloric materials, and the shape-memory alloy geometry scheme on the performance of car seat cold thermal energy storage devices is also discussed. Since SMAs are both solid-state refrigerants and thermal energy storage materials, hopefully the proposed concept can promote the development of more promising shape-memory alloy-based cold and hot thermal energy storage devices.

Keywords shape-memory alloy (SMA)      elastocaloric effect (eCE)      cooled seat      cold thermal energy storage     
Corresponding Author(s): Suxin QIAN   
About author:

* These authors contributed equally to this work.

Online First Date: 25 December 2022    Issue Date: 29 August 2023
 Cite this article:   
Yian LU,Suxin QIAN,Jun SHEN. A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys[J]. Front. Energy, 2023, 17(4): 504-515.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0855-3
https://academic.hep.com.cn/fie/EN/Y2023/V17/I4/504
Fig.1  Theoretical cycle of SMA-based cold thermal energy storage.
Fig.2  SMA cold thermal energy storage cycle.
Fig.3  Illustration of the car seat cold thermal energy storage device ((1) slide track, (2) clamp, (3) pulley, (4) pressure sensor, and (5) steel cable).
Fig.4  Block diagrams of simulation model.
Meshing details Boundary conditions
km Tm x|x= 0;x=xm ax= km Tm y|y=0;y= ym ax=h (TfTm)
kκ Tκ x|x= 0;x=xm ax= kκ Tκ y|y=0;y= ym ax=h (TfTκ ) km Tm x|x= 0;x=xm ax= km Tm y|y=0;y= ym ax=h (TfTm) km Tm x|x= xm ax=kκ Tκ y|x=0= q'' =U( Tm Tκ )
Tab.1  Introduction of meshing details and the boundary conditions
Symbol Value Symbol Value
CAM/(MPa·K−1) 10.4 kM/(W·(m·K)−1) 8.6
CMA/(MPa·K−1) 14.0 kCu/(W·(m·K)−1) 400
TAs/K 283.15 τ/s 1.0×10−3
TMs/K 273.15 VL/m3 5×10−23
εT 0.025 hf/(W·(m2·K)−1) 10
EA/GPa 35.9 U/(W·(m2·K)−1) 10000
EM/GPa 32 l1×l2×l3/mm3 350 × 150 × 3
ρm/(kg·m−3) 6500 ε˙/ s1 0.01
cp,m/(J·(kg·K)−1) 450 Tf/K 313.15
ρCu/(kg·m−3) 8900 Tm,0/K 308.15
cp,Cu/(J·(kg·K)−1) 390 TCu,0/K 308.15
?s/(J·(kg·K)−1) 40 εmax 0.05
kA/(W·(m·K)−1) 18
Tab.2  Thermomechanical, model-specific, process-related parameters, and initial conditions used the simulations [22, 2426]
Fig.5  Transient characteristics of discharging process.
Fig.6  Impact of initial temperature of discharging characteristic.
Fig.7  Impact of different geometric schemes of SMA.
Ni50.4Ti49.6 Cu68Al16Zn16 Cu71.5Al17.5Mn11
Qpro/J 11204 4056.9 4535.6
η/% 66 62 63
TCu,min/°C 26.2 31.7 32.0
W/W 23.0 6.1 2.6
εmax 0.05 0.05 0.04
σmax/MPa 800 380 160
Tab.3  Results for the case of fixed SMA geometry
Ni50.4Ti49.6 Cu68Al16Zn16 Cu71.5Al17.5Mn11
Qpro/J 11204 18865.7 43213.6
η/% 66 30 17
TCu,min/°C 26.2 28.2 26.2
W/W 23.0 24.4 23.4
COP 1.78 1.30 1.71
Tab.4  Results for the case of fixed motor power
Fig.8  Impact of elastocaloric materials.
a Thermal diffusivity/(m2?s–1)
COP Coefficient of performance
C Clausius-Clapeyron coefficient/(MPa?K)
cp Specific heat/(J?(kg?K)–1)
eCE Elastocaloric effect
E Young’s modulus/MPa
g''' Generation term in energy equation/(W?m–3)
h Heat transfer coefficient/(W?(m2?K)–1)
k Thermal conductivity/(W?(m?K)–1)
l Length/m
Q Heat transfer/J
S Surface area/m2
Δ s Entropy change/(J?( kg?K)–1)
SMA Shape-memory alloy
s Specific entropy/(J?( kg?K)–1)
T Temperature/K
U Solid-solid heat transfer coefficient/(W?(m2?K)–1)
V Volume/m3
VL Transforming layer volume/m3
Greek symbols
ε Strain
ε˙ Strain rate/s–1
η Energy storage efficiency
ξ Phase fraction
ρ Density/(kg?m–3)
τ Relaxation time constant/s
σ Stress/MPa
Subscripts
A Austenite
As Austenite start
Af Austenite finish
Cu Copper
c Cooling capacity in one cycle
f Air
M Martensite
Ms Martensite start
Mf Martensite finish
max Maximum
m SMA
Superscripts
AM Austenite to martensite transformation
MA Martensite to austenite transformation
  
1 J P Da Cunha, P Eames. Thermal energy storage for low and medium temperature applications using phase change materials—a review. Applied Energy, 2016, 177: 227–238
https://doi.org/10.1016/j.apenergy.2016.05.097
2 X Qian. Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration. Frontiers in Energy, 2022, 16(1): 19–22
https://doi.org/10.1007/s11708-022-0820-1
3 H Nazir, M Batool, F J B Osorio. et al.. Recent developments in phase change materials for energy storage applications: a review. International Journal of Heat and Mass Transfer, 2019, 129: 491–523
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
4 C P Mediwaththe, M Shaw, S Halgamuge. et al.. An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage. IEEE Transactions on Sustainable Energy, 2020, 11(1): 467–476
https://doi.org/10.1109/TSTE.2019.2895387
5 D Lencer, M Salinga, M Wuttig. Design rules for phase-change materials in data storage applications. Advanced Materials, 2011, 23(18): 2030–2058
https://doi.org/10.1002/adma.201004255 pmid: 21469218
6 J Quarini, A Prince. Solid state refrigeration: cooling and refrigeration using crystalline phase changes in metal alloys. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 2004, 218(10): 1175–1179
https://doi.org/10.1243/0954406042369062
7 A Fallahi, G Guldentops, M Tao. et al.. Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties. Applied Thermal Engineering, 2017, 127: 1427–1441
https://doi.org/10.1016/j.applthermaleng.2017.08.161
8 D J Sharar, B F Donovan, R J Warzoha. et al.. Solid-state thermal energy storage using reversible martensitic transformations. Applied Physics Letters, 2019, 114(14): 143902
https://doi.org/10.1063/1.5087135
9 D Cong, W Xiong, A Planes. et al.. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Physical Review Letters, 2019, 122(25): 255703
https://doi.org/10.1103/PhysRevLett.122.255703 pmid: 31347887
10 L C Brinson. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures, 1993, 4(2): 229–242
https://doi.org/10.1177/1045389X9300400213
11 Y Chen, Y Wang, W Sun. et al.. A compact elastocaloric refrigerator. The Innovation, 2022, 3(2): 100205
https://doi.org/10.1016/j.xinn.2022.100205 pmid: 35146469
12 N Hite, D J Sharar, W Trehern. et al.. NiTiHf shape memory alloys as phase change thermal storage materials. Acta Materialia, 2021, 218: 117175
https://doi.org/10.1016/j.actamat.2021.117175
13 D J Sharar, A C Leff, A A Wilson. et al.. High-capacity high-power thermal energy storage using solid-solid martensitic transformations. Applied Thermal Engineering, 2021, 187: 116490
https://doi.org/10.1016/j.applthermaleng.2020.116490
14 C Chluba, W Ge, R Lima de Miranda. et al.. Shape memory alloys. Ultralow-fatigue shape memory alloy films. Science, 2015, 348(6238): 1004–1007
https://doi.org/10.1126/science.1261164 pmid: 26023135
15 H Ossmer, C Chluba, M Gueltig. et al.. Local evolution of the elastocaloric effect in TiNi-based films. Shape Memory and Superelasticity, 2015, 1(2): 142–152
https://doi.org/10.1007/s40830-015-0014-3
16 S Li, D Cong, X Sun. et al.. Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Materials Research Letters, 2019, 7(12): 482–489
https://doi.org/10.1080/21663831.2019.1659436
17 N EmaikwuD CataliniJ Muehlbauer, et al.. Experimental investigation of a staggered-tube active elastocaloric regenerator. International Journal of Refrigeration, 2022, online, https://doi.org/10.1016/j.ijrefrig.2022.09.006
18 S Qian, Y Geng, Y Wang. et al.. Design of a hydraulically driven compressive elastocaloric cooling system. Science and Technology for the Built Environment, 2016, 22(5): 500–506
https://doi.org/10.1080/23744731.2016.1171630
19 J Tušek, K Engelbrecht, D Eriksen. et al.. A regenerative elastocaloric heat pump. Nature Energy, 2016, 1(10): 1–6
https://doi.org/10.1038/nenergy.2016.134
20 J Tušek, K Engelbrecht, L P Mikkelsen. et al.. Elastocaloric effect of Ni-Ti wire for application in a cooling device. Journal of Applied Physics, 2015, 117(12): 124901
https://doi.org/10.1063/1.4913878
21 S Qian, Y Geng, Y Wang. et al.. A review of elastocaloric cooling: materials, cycles and system integrations. International Journal of Refrigeration, 2016, 64: 1–19
https://doi.org/10.1016/j.ijrefrig.2015.12.001
22 S Qian, L Yuan, J Yu. et al.. Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy, 2017, 141: 744–756
https://doi.org/10.1016/j.energy.2017.09.116
23 J Tušek, K Engelbrecht, R Millán-Solsona. et al.. The elastocaloric effect: a way to cool efficiently. Advanced Energy Materials, 2015, 5(13): 1500361
https://doi.org/10.1002/aenm.201500361
24 F Wendler, H Ossmer, C Chluba. et al.. Mesoscale simulation of elastocaloric cooling in SMA films. Acta Materialia, 2017, 136: 105–117
https://doi.org/10.1016/j.actamat.2017.06.044
25 S Qian, A Alabdulkarem, J Ling. et al.. Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. International Journal of Refrigeration, 2015, 57: 62–76
https://doi.org/10.1016/j.ijrefrig.2015.04.012
26 J Chen, K Zhang, Q Kan. et al.. Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling. Applied Physics Letters, 2019, 115(9): 093902
https://doi.org/10.1063/1.5115793
27 E Bonnot, R Romero, L Mañosa. et al.. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Physical Review Letters, 2008, 100(12): 125901
https://doi.org/10.1103/PhysRevLett.100.125901 pmid: 18517885
28 S Qian, Y Geng, Y Wang. et al.. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philosophical Transactions. Series A. Mathematical, Physical and Engineering Science, 2016, 374(2074): 20150309
https://doi.org/10.1098/rsta.2015.0309 pmid: 27402936
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed