Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (3) : 340-348    https://doi.org/10.1007/s11708-010-0131-9
RESEARCH ARTICLE
Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach
Jun YAO1, Wenbing LI1, Fangfang XIA1, Jing WANG1, Chengran FANG2, Dongsheng SHEN3()
1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; 2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China; 3. Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
 Download: PDF(257 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Municipal solid waste incinerator (MSWI) bottom ash is often reused as a secondary construction material. This study used a comprehensive approach to characterize the leaching behavior of copper (Cu) from the MSWI bottom ash. The batch titration procedure was used to determine the acid neutralizing capacity and Cu leaching as a function of pH. The sequential extraction procedure (SEP) was adopted to analyze the speciation of Cu in the MSWI bottom ash. The metal speciation equilibrium model for surface and ground water (Visual MINTEQ) was used to evaluate the equilibrium of the leachates with the relative minerals, and to determine the speciation of the aqueous Cu in the leachates. Based on the multi-analysis of the results, Cu would be significantly released from the MSWI bottom ash when it is acidic. The Cu leaching pattern was not only affected by dissolved organic carbon, it was also limited by its speciation in the MSWI bottom ash. Furthermore, almost 100% of the aqueous Cu in the leachate was bound to organic matter in basic and neutral conditions, but mostly existed as Cu2+ in an acidic condition. These findings provide an important insight into predicting the leaching behavior of Cu from the MSWI bottom ash, as well as its impact on the environment.

Keywords MSWI bottom ash      Cu leaching      batch titration procedure      SEP     
Corresponding Author(s): SHEN Dongsheng,Email:shends@zju.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Jun YAO,Wenbing LI,Fangfang XIA, et al. Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach[J]. Front Energ, 2011, 5(3): 340-348.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0131-9
https://academic.hep.com.cn/fie/EN/Y2011/V5/I3/340
PropertyValue
Moisture content/%1.6
Bulk density/(kg·m-3)1277.6
LOI/%2.2
pH11.2
Tab.1  Physi-chemical properties of the MSWI bottom ash sample
ElementContent (dry wt.)/(mg·kg-1)
Al40920.0±1600.0
Si223600.0±4657.0
Na9040.1±178.2
K15792.0±167.0
Mg5997.0±114.5
Ca69413.0±2613.0
Fe26008.0±28.0
S5070.0±19.8
Mn1245.9±230.6
Cu314.6±22.3
Tab.2  Elemental composition of the MSWI bottom ash sample
Fig.1  XRD patterns of the MSWI bottom ash sample
Fig.2  The pH titration curve of the MSWI bottom ash sample
Fig.3  Dissolution of cations and anions as a function of acid added
Fig.4  Abbreviation: Cu(OH)—am-Cu(OH); Azurite—Azurite (Cu(OH)(CO)); Tenorite—Tenorite (CuO); Malachite—Malachite (Cu(OH)CO)
Cu concentration in the leachate as a function of pH [represented by symbols (Δ)], and Visual MINTEQ prediction assuming equilibrium with different mineral phases by (a) SHM model; (b) NICA-Donnan model; (c) Gaussian DOM model
Fig.5  Cu concentration in the leachate as a function of liquid-to-solid ratio (4 mmol H/g MSWI bottom ash acid addition)
Fig.6  F1—exchangeable fraction; F2—carbonate-bound fraction; F3—Fe—Mn oxide-bound fraction; F4—organic matter-bound fraction; F5—residue fraction
Speciation of Cu in the MSWI bottom ash sample
pH valueSHMNICA-Donnan model
10.37.03.310.37.03.3
Bound to hydroxyl1.1E-102.6E-111.2E-91.3E-113.2E-111.1E-9
Bound to hydrion---1.6E-162.7E-112.0E-7
Free ion (Cu2+)4.6E-151.0E-102.9E-55.3E-161.3E-102.8E-5
Bound to chloride ion3.8E-176.8E-131.9E-74.4E-188.5E-131.7E-7
Bound to carbonate ion1.5E-134.9E-122.8E-111.8E-146.1E-122.6E-11
Bound to sulfate ion2.3E-166.1E-126.0E-72.7E-177.7E-122.6E-11
Bound to organic matter8.4E-79.7E-72.1E-68.4E-79.7E-73.8E-6
Tab.3  Speciation of Cu in the leachate by SHM and NICA-Donnan model unit:mol/L
1 Wan X, Wang W, Ye T, Guo Y, Gao X. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. Journal of Hazardous Materials , 2006, 134(1-3): 197–201
doi: 10.1016/j.jhazmat.2005.10.048
2 Chimenos J M, Segarra M, Fern?ndez M A, Espiell F. Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials , 1999, 64(3): 211–222
doi: 10.1016/S0304-3894(98)00246-5
3 Zhao Y C, Song L J, Li G J. Chemical stabilization of MSW incinerator fly ashes. Journal of Hazardous Materials , 2002, 95(1,2): 47–63
4 Belevi H, Langmeier M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environmental Science and Technology , 2000, 34(12): 2507–2512
doi: 10.1021/es991079e
5 Belevi H, Moench H. Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental Science and Technology , 2000, 34(12): 2501–2506
doi: 10.1021/es991078m
6 Zhang H, He P J, Shao L M. Flow analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components. Environmental Science and Technology , 2008, 42(16): 6211–6217
doi: 10.1021/es800548w
7 Paquin P R, Santore R C, Wu K B, Kavvadas C D, Di Toro D M. The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environmental Science Policy , 2000, 3(Suppl 1): 175–182
doi: 10.1016/S1462-9011(00)00047-2
8 Lu Y, Allen H E. Characterization of copper complexation with natural dissolved organic matter (DOM)-link to acidic moieties of DOM and competition by Ca and Mg. Water Research , 2002, 36(20): 5083–5101
doi: 10.1016/S0043-1354(02)00240-3
9 Chakraborty P, Chakrabarti C L. Chemical speciation of Co, Ni, Cu, and Zn in mine effluents and effects of dilution of the effluent on release of the above metals from their metal-dissolved organic carbon (DOC) complexes. Analytica Chimica Acta , 2006, 571(2): 260–269
doi: 10.1016/j.aca.2006.04.069
10 Van Zomeren A, Comans R N J. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. Environmental Science and Technology , 2004, 38(14): 3927–3932
doi: 10.1021/es035266v
11 Olsson S, van Schaik J W J, Gustafsson J P, Kleja D B, van Hees P A W. Copper(II) binding to dissolved organic matter fractions in municipal solid waste incinerator bottom ash leachate. Environmental Science and Technology , 2007, 41(12): 4286–4291
doi: 10.1021/es062954g
12 Arickx S, van Gerven T, Boydens E, L'Ho?st P, Blanpain B, Vandecasteele C. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. Applied Geochemistry , 2008, 23(12): 3642–3650
doi: 10.1016/j.apgeochem.2008.09.006
13 Kinniburgh D G, Milne C J, Benedetti M F. Metal ion binding by humic acid: Application of the NICA-Donnan model. Environmental Science and Technology , 1996, 30(5): 1687–1698
doi: 10.1021/es950695h
14 Grimm D M, Azarraga L V, Carreira L A, Susetyo W. Continuous multiligand distribution model used to predict the stability constant of copper(II) metal complexation with humic material from fluorescence quenching data. Environmental Science and Technology , 1991, 25(8): 1427–1431
doi: 10.1021/es00020a010
15 Gustafsson J P. Modeling the acid-base properties and metal complexation of humic substances with the stockholm humic model. Journal of Colloid and Interface Science , 2001, 244(1): 102–112
doi: 10.1006/jcis.2001.7871
16 Meima J A, van Zomeren A, Comans R N J. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates. Environmental Science and Technology , 1999, 33(9): 1424–1429
doi: 10.1021/es971113u
17 Meima J A, Comans R N J. Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash. Environmental Science and Technology , 1997, 31(5): 1269–1276
doi: 10.1021/es9603158
18 Johnson C A, Brandenberger S, Baccini P. Acid neutralizing capacity of municipal waste incinerator bottom ash. Environmental Science and Technology , 1995, 29(1): 142–147
doi: 10.1021/es00001a018
19 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry , 1979, 51(7): 844–851
doi: 10.1021/ac50043a017
20 Yamasaki S. Digestion methods for total analysis. In: Japanese Society of Soil Science and Plant Nutrition Ed. Soil Environment Analysis, Hakuyusya, Tokyo , 1997, 278–288
21 Kersten M, Schulz-Dobrick B, Lichtensteiger T, Johnson C A. Speciation of Cr in leachates of a MSWI bottom ash landfill. Environmental Science and Technology , 1998, 32(10): 3448–3448
doi: 10.1021/es982010u
22 Van Zomeren A, Comans R N J. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Management , 2009, 29(7): 2059–2064
doi: 10.1016/j.wasman.2009.01.005
23 Polettini A, Pomi R. The leaching behavior of incinerator bottom ash as affected by accelerated ageing. Journal of Hazardous Materials , 2004, 113(1-3): 209–215
doi: 10.1016/j.jhazmat.2004.06.009
24 Johnson C A, Furrer G. Influence of biodegradation processes on the duration of CaCO3 as a pH buffer in municipal solid waste incinerator bottom ash. Environmental Science and Technology , 2002, 36(2): 215–220
doi: 10.1021/es010080m
25 Johnson C A, Kersten M, Ziegler F, Moor H C. Leaching behaviour and solubility—Controlling solid phases of heavy metals in municipal solid waste incinerator ash. Waste Management , 1996, 16(1-3): 129–134
doi: 10.1016/S0956-053X(96)00036-0
26 Eighmy T T, Eusden J D, Krzanowski J E. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environmental Science and Technology , 1995, 29(3): 629–646
doi: 10.1021/es00003a010
27 Ecke H, Svensson M. Mobility of organic carbon from incineration residues. Waste Management , 2008, 28(8): 1301–1309
doi: 10.1016/j.wasman.2007.05.013
28 Maiz I, Arambarri I, Garcia R, Mill?n E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution , 2000, 110(1): 3–9
doi: 10.1016/S0269-7491(99)00287-0
[1] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[2] Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
[3] Florian PAOLI, Tong WANG. Numerical study of internal flow field and flow passage improvement of an inlet particle separator[J]. Front Energ, 2011, 5(4): 386-397.
[4] Liansuo AN , Zhi WANG , Zhonghe HAN , . Numerical study and control method of interaction of nucleation and boundary layer separation in condensing flow[J]. Front. Energy, 2009, 3(3): 254-261.
[5] CHANG Kun, LI Qiang. Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas[J]. Front. Energy, 2008, 2(4): 484-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed