Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2021, Vol. 22 Issue (12): 1565-1582   https://doi.org/10.1631/FITEE.2000716
  本期目录
结合熵、梯度、峰度特征的无参考噪声图像质量评价
姚恒1(), 马奔2, 邹勔2, 徐栋3,4(), 姚劲草3,4()
1. 上海理工大学光电信息与计算机工程学院,中国上海市,200093
2. 上海理工大学机械工程学院,中国上海市,200093
3. 中国科学院大学附属肿瘤医院(浙江省肿瘤医院),中国杭州市,310000
4. 中国科学院肿瘤与基础医学研究所,中国杭州市,310000
No-reference noisy image quality assessment incorporating features of entropy, gradient, and kurtosis
Heng YAO1(), Ben MA2, Mian ZOU2, Dong XU3,4(), Jincao YAO3,4()
1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3. Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou 310000, China
4. Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310000, China
 全文: PDF(41974 KB)  
摘要:

噪声是影响人类视觉感知最常见的图像失真类型。本文提出一种基于熵、梯度和峰度特征的无参考图像质量评估方法。具体来说,基于偏度不变性在离散余弦变换域进行图像噪声估计,进一步计算得到熵特征。在主成分分析变换域,通过统计有噪声图像与无噪声图像之间的显著差异得到峰度特征。此外,将熵和峰度特征与梯度系数结合,提高熵和峰度特征与主观得分之间的一致性。通过不同方向的滤波器对图像进行梯度特征提取,最后支持向量回归将所有提取的特征映射到综合评分系统中。为验证算法性能,在3个主流数据库(即LIVE、TID2013以及CSIQ)中对该方法进行评价。实验结果验证了该方法的优越性,尤其是在反映预测精度的皮尔逊线性相关系数方面的突出性能。

Abstract

Noise is the most common type of image distortion affecting human visual perception. In this paper, we propose a no-reference image quality assessment (IQA) method for noisy images incorporating the features of entropy, gradient, and kurtosis. Specifically, image noise estimation is conducted in the discrete cosine transform domain based on skewness invariance. In the principal component analysis domain, kurtosis feature is obtained by statistically counting the significant differences between images with and without noise. In addition, both the consistency between the entropy and kurtosis features and the subjective scores are improved by combining them with the gradient coefficient. Support vector regression is applied to map all extracted features into an integrated scoring system. The proposed method is evaluated in three mainstream databases (i.e., LIVE, TID2013, and CSIQ), and the results demonstrate the superiority of the proposed method according to the Pearson linear correlation coefficient which is the most significant indicator in IQA.

Key wordsNoisy image quality assessment    Noise estimation    Kurtosis    Human visual system    Support vector regression
收稿日期: 2020-12-23      出版日期: 2022-01-18
通讯作者: 姚恒,徐栋,姚劲草     E-mail: hyao@usst.edu.cn;xudong@zjcc.org.cn;yaojc@zjcc.org.cn
Corresponding Author(s): Heng YAO,Dong XU,Jincao YAO   
 引用本文:   
姚恒, 马奔, 邹勔, 徐栋, 姚劲草. 结合熵、梯度、峰度特征的无参考噪声图像质量评价[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1565-1582.
Heng YAO, Ben MA, Mian ZOU, Dong XU, Jincao YAO. No-reference noisy image quality assessment incorporating features of entropy, gradient, and kurtosis. Front. Inform. Technol. Electron. Eng, 2021, 22(12): 1565-1582.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2000716
https://academic.hep.com.cn/fitee/CN/Y2021/V22/I12/1565
[1] FITEE-1565-20003-HY_suppl_1 Download
[2] FITEE-1565-20003-HY_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed