Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Front. Inform. Technol. Electron. Eng    2018, Vol. 19 Issue (10) : 1236-1244    https://doi.org/10.1631/FITEE.1800494
Perspective
Moving from exascale to zettascale computing: challenges and techniques
Xiang-ke LIAO, Kai LU(), Can-qun YANG, Jin-wen LI, Yuan YUAN, Ming-che LAI, Li-bo HUANG, Ping-jing LU, Jian-bin FANG, Jing REN, Jie SHEN
College of Computer, National University of Defense Technology, Changsha 410073, China
 Download: PDF(395 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-performance computing (HPC) is essential for both traditional and emerging scientific fields, enabling scientific activities to make progress. With the development of high-performance computing, it is foreseeable that exascale computing will be put into practice around 2020. As Moore’s law approaches its limit, high-performance computing will face severe challenges when moving from exascale to zettascale, making the next 10 years after 2020 a vital period to develop key HPC techniques. In this study, we discuss the challenges of enabling zettascale computing with respect to both hardware and software. We then present a perspective of future HPC technology evolution and revolution, leading to our main recommendations in support of zettascale computing in the coming future.

Keywords High-performance computing      Zettascale      Micro-architectures      Interconnection      Storage system      Manufacturing process      Programming models and environments     
Corresponding Author(s): Kai LU   
Issue Date: 03 December 2018
 Cite this article:   
Xiang-ke LIAO,Kai LU,Can-qun YANG, et al. Moving from exascale to zettascale computing: challenges and techniques[J]. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1236-1244.
 URL:  
https://academic.hep.com.cn/fitee/EN/10.1631/FITEE.1800494
https://academic.hep.com.cn/fitee/EN/Y2018/V19/I10/1236
[1] FITEE-1236-18005-XKL_suppl_1 Download
[2] FITEE-1236-18005-XKL_suppl_2 Download
[1] Zhao-qi WU, Jin WEI, Fan ZHANG, Wei GUO, Guang-wei XIE. MDLB: a metadata dynamic load balancing mechanism based on reinforcement learning[J]. Front. Inform. Technol. Electron. Eng, 2020, 21(7): 1034-1046.
[2] Yi-shui LI, Xin-hai CHEN, Jie LIU, Bo YANG, Chun-ye GONG, Xin-biao GAN, Sheng-guo LI, Han XU. OHTMA: an optimized heuristic topology-aware mapping algorithm on theTianhe-3 exascale supercomputer prototype[J]. Front. Inform. Technol. Electron. Eng, 2020, 21(6): 939-949.
[3] Shang-jian ZHANG, Yong LIU, Rong-guo LU, Bao SUN, Lian-shan YAN. Heterogeneous III-V silicon photonic integration: components and characterization[J]. Front. Inform. Technol. Electron. Eng, 2019, 20(4): 472-480.
[4] Wen-bing HAN, Xiao-gang CHEN, Shun-fen LI, Ge-zi LI, Zhi-tang SONG, Da-gang LI, Shi-yan CHEN. Anovel non-volatile memory storage system for I/O-intensive applications[J]. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1291-1302.
[5] Wei HU, Guang-ming LIU, Yan-huang JIANG. FTRP: a new fault tolerance framework using process replication and prefetching for high-performance computing[J]. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1273-1290.
[6] Xiang-hui XIE, Xun JIA. Exploring high-performance processor architecture beyond the exascale[J]. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1224-1229.
[7] Dhabaleswar PANDA, Xiao-yi LU, Hari SUBRAMONI. Networking and communication challenges for post-exascale systems[J]. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1230-1235.
[8] Ji-guang WAN, Da-ping LI, Xiao-yang QU, Chao YIN, Jun WANG, Chang-sheng XIE. Areliable and energy-efficient storage system with era sure coding cache[J]. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1370-1384.
[9] Wei CAI, Bing-cheng ZHU, Xu-min GAO, Yong-chao YANG, Jia-lei YUAN, Gui-xia ZHU, Yong-jin WANG, Peter GRÜNBERG. On-chip optical interconnect using visible light[J]. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1288-1294.
[10] Xin LIU, Yu-tong LU, Jie YU, Peng-fei WANG, Jie-ting WU, Ying LU. ONFS: a hierarchical hybrid file system based on memory, SSD, andHDDfor high performance computers[J]. Front. Inform. Technol. Electron. Eng, 2017, 18(12): 1940-1971.
[11] Nan-nan ZHAO,Ji-guang WAN,Jun WANG,Chang-sheng XIE. Areliable power management scheme for consistent hashing based distributed key value storage systems[J]. Front. Inform. Technol. Electron. Eng, 2016, 17(10): 994-1007.
[12] Long-xiang WANG,Xiao-she DONG,Xing-jun ZHANG,Yin-feng WANG,Tao JU,Guo-fu FENG. TextGen: a realistic text data content generation method for modern storage system benchmarks[J]. Front. Inform. Technol. Electron. Eng, 2016, 17(10): 982-993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed