| 1 |
Amann H Parabolicevolution equations and nonlinear boundary conditionsJ Differential Equations 1988 72201269. doi:10.1016/0022‐0396(88)90156‐8
|
| 2 |
Brandle C Quirós F Rossi J D A complete classification of simultaneous blow-up ratesAppl Math Lett 2006 19607611. doi:10.1016/j.aml.2005.08.007
|
| 3 |
Bebernes J Eberly D Mathematical Problem from CombustionTheoryAppl Math Sci 83BerlinSpringer-Verlag 1989
|
| 4 |
Chen Y P Blow-upfor a system of heat equations with nonlocal sources and absorptionsComput Math Appl 2004 48361372. doi:10.1016/j.camwa.2004.05.002
|
| 5 |
Deng K Globalexistence and blow-up for a system of heat equations with a nonlinearboundary conditionMath Meth Appl Sci 1995 18307315. doi:10.1002/mma.1670180405
|
| 6 |
Deng K Blow-uprates for parabolic systemsZ Angew MathPhys 1995 46110118. doi:10.1007/BF00917874
|
| 7 |
Hu B Yin H M The profile near blow-up timefor the solution of the heat equation with a nonlinear boundary conditionTrans Amer Math Soc 1994 346117135. doi:10.2307/2154944
|
| 8 |
Jiang Z X Zheng S N Blow-up rate for a nonlineardiffusion equation with absorption and nonlinear boundary fluxAdv Math (China) 2004 33615620
|
| 9 |
Li H L Wang M X Critical exponents and lowerbounds of blow-up rate for a reaction-diffusion systemNonlinear Anal 2005 6310831093. doi:10.1016/j.na.2005.05.037
|
| 10 |
Lin Z G Blowupbehaviors for diffusion system coupled through nonlinear boundaryconditions in a half spaceSci China, SerA 2004 477282. doi:10.1360/03ys0068
|
| 11 |
Liu Q L Li Y X Xie C H The blowup property of solutions to degenerate parabolicequation with localized nonlinear reactionsActa Math Sinica (Chin Ser) 2003 4611351142
|
| 12 |
Quirós F Rossi J D Blow-up sets and Fujita typecurves for a degenerate parabolic system with nonlinear boundary conditionsIndiana Univ Math J 2001 50629654
|
| 13 |
Rossi J D Theblow up rate for a semilinear parabolic equation with a nonlinearboundary conditionActa Mathematica UnivComenian (NS) 1998 67343350
|
| 14 |
Souplet P Uniformblow-up profile and boundary behaviour for a non-local reaction-diffusionequation with critical dampingMath MethodsAppl Sci 2004 2718191829. doi:10.1002/mma.567
|
| 15 |
Souplet P Uniformblow-up profiles and boundary behavior for diffusion equations withnonlocal nonlinear sourceJ DifferentialEquations 1999 153374406. doi:10.1006/jdeq.1998.3535
|
| 16 |
Zheng S N Nonexistenceof positive solutions to a semilinear elliptic system and blow-upestimates for a reaction-diffusion systemJ Math Anal Appl 1999 232293311. doi:10.1006/jmaa.1999.6273
|
| 17 |
Zheng S N Li F J Critical exponents for a reaction-diffusionsystem with absorptions and coupled boundary fluxProc Edinburgh Math Soc 2005 48110. doi:10.1017/S0013091504000811
|
| 18 |
Zheng S N Song X F Interactions among multi-nonliearitiesin a nonlinear diffusion system with absorptions and nonlinear boundaryfluxNonlinear Anal 2004 57519530. doi:10.1016/j.na.2004.02.026
|
| 19 |
Zheng S N Li F J Liu B C Asymptotic behavior for a reaction-diffusion equation withinner absorption and boundary fluxApplMath Lett 2006 19942948. doi:10.1016/j.aml.2005.11.009
|
| 20 |
Zheng S N Su H A quasilinear reaction-diffusionsystem coupled via nonlocal sourcesApplMath Comput 2006 180295308. doi:10.1016/j.amc.2005.12.020
|
| 21 |
Zheng S N Wang W Critical exponents for a nonlinearparabolic systemNonlinear Anal 2007 6711901210. doi:10.1016/j.na.2006.07.007
|
| 22 |
Zheng S N Wang W Blow-up rate for a nonlineardiffusion equationAppl Math Lett 2006 1913851389. doi:10.1016/j.aml.2006.02.008
|