Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2008, Vol. 3 Issue (1) : 87-99    https://doi.org/10.1007/s11464-008-0002-4
Asymptotic analysis of a coupled nonlinear parabolic system
QIAO Lan, ZHENG Sining
Department of Applied Mathematics, Dalian University of Technology;
 Download: PDF(157 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper deals with asymptotic analysis of a parabolic system with inner absorptions and coupled nonlinear boundary fluxes. Three simultaneous blow-up rates are established under different dominations of nonlinearities, and simply represented in a characteristic algebraic system introduced for the problem. In particular, it is observed that two of the multiple blow-up rates are absorption-related. This is substantially different from those for nonlinear parabolic problems with absorptions in all the previous literature, where the blow-up rates were known as absorption-independent. The results of the paper rely on the scaling method with a complete classification for the nonlinear parameters of the model. The first example of absorption-related blow-up rates was recently proposed by the authors for a coupled parabolic system with mixed type nonlinearities. The present paper shows that the newly observed phenomena of absorption-related blow-up rates should be due to the coupling mechanism, rather than the mixed type nonlinearities.
Issue Date: 05 March 2008
 Cite this article:   
QIAO Lan,ZHENG Sining. Asymptotic analysis of a coupled nonlinear parabolic system[J]. Front. Math. China, 2008, 3(1): 87-99.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-008-0002-4
https://academic.hep.com.cn/fmc/EN/Y2008/V3/I1/87
1 Amann H Parabolicevolution equations and nonlinear boundary conditionsJ Differential Equations 1988 72201269.
doi:10.1016/0022‐0396(88)90156‐8
2 Brandle C Quirós F Rossi J D A complete classification of simultaneous blow-up ratesAppl Math Lett 2006 19607611.
doi:10.1016/j.aml.2005.08.007
3 Bebernes J Eberly D Mathematical Problem from CombustionTheoryAppl Math Sci 83BerlinSpringer-Verlag 1989
4 Chen Y P Blow-upfor a system of heat equations with nonlocal sources and absorptionsComput Math Appl 2004 48361372.
doi:10.1016/j.camwa.2004.05.002
5 Deng K Globalexistence and blow-up for a system of heat equations with a nonlinearboundary conditionMath Meth Appl Sci 1995 18307315.
doi:10.1002/mma.1670180405
6 Deng K Blow-uprates for parabolic systemsZ Angew MathPhys 1995 46110118.
doi:10.1007/BF00917874
7 Hu B Yin H M The profile near blow-up timefor the solution of the heat equation with a nonlinear boundary conditionTrans Amer Math Soc 1994 346117135.
doi:10.2307/2154944
8 Jiang Z X Zheng S N Blow-up rate for a nonlineardiffusion equation with absorption and nonlinear boundary fluxAdv Math (China) 2004 33615620
9 Li H L Wang M X Critical exponents and lowerbounds of blow-up rate for a reaction-diffusion systemNonlinear Anal 2005 6310831093.
doi:10.1016/j.na.2005.05.037
10 Lin Z G Blowupbehaviors for diffusion system coupled through nonlinear boundaryconditions in a half spaceSci China, SerA 2004 477282.
doi:10.1360/03ys0068
11 Liu Q L Li Y X Xie C H The blowup property of solutions to degenerate parabolicequation with localized nonlinear reactionsActa Math Sinica (Chin Ser) 2003 4611351142
12 Quirós F Rossi J D Blow-up sets and Fujita typecurves for a degenerate parabolic system with nonlinear boundary conditionsIndiana Univ Math J 2001 50629654
13 Rossi J D Theblow up rate for a semilinear parabolic equation with a nonlinearboundary conditionActa Mathematica UnivComenian (NS) 1998 67343350
14 Souplet P Uniformblow-up profile and boundary behaviour for a non-local reaction-diffusionequation with critical dampingMath MethodsAppl Sci 2004 2718191829.
doi:10.1002/mma.567
15 Souplet P Uniformblow-up profiles and boundary behavior for diffusion equations withnonlocal nonlinear sourceJ DifferentialEquations 1999 153374406.
doi:10.1006/jdeq.1998.3535
16 Zheng S N Nonexistenceof positive solutions to a semilinear elliptic system and blow-upestimates for a reaction-diffusion systemJ Math Anal Appl 1999 232293311.
doi:10.1006/jmaa.1999.6273
17 Zheng S N Li F J Critical exponents for a reaction-diffusionsystem with absorptions and coupled boundary fluxProc Edinburgh Math Soc 2005 48110.
doi:10.1017/S0013091504000811
18 Zheng S N Song X F Interactions among multi-nonliearitiesin a nonlinear diffusion system with absorptions and nonlinear boundaryfluxNonlinear Anal 2004 57519530.
doi:10.1016/j.na.2004.02.026
19 Zheng S N Li F J Liu B C Asymptotic behavior for a reaction-diffusion equation withinner absorption and boundary fluxApplMath Lett 2006 19942948.
doi:10.1016/j.aml.2005.11.009
20 Zheng S N Su H A quasilinear reaction-diffusionsystem coupled via nonlocal sourcesApplMath Comput 2006 180295308.
doi:10.1016/j.amc.2005.12.020
21 Zheng S N Wang W Critical exponents for a nonlinearparabolic systemNonlinear Anal 2007 6711901210.
doi:10.1016/j.na.2006.07.007
22 Zheng S N Wang W Blow-up rate for a nonlineardiffusion equationAppl Math Lett 2006 1913851389.
doi:10.1016/j.aml.2006.02.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed