Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 425-436    https://doi.org/10.1007/s11464-009-0027-3
RESEARCH ARTICLE
Stochastic modeling of unresolved scales in complex systems
Jinqiao DUAN1,2()
1. Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA; 2. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(278 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Model uncertainties or simulation uncertainties occur in mathematical modeling of multiscale complex systems, since some mechanisms or scales are not represented (i.e., ‘unresolved’) due to a lack in our understanding of these mechanisms or limitations in computational power. The impact of these unresolved scales on the resolved scales needs to be parameterized or taken into account. A stochastic scheme is devised to take the effects of unresolved scales into account, in the context of solving nonlinear partial differential equations. An example is presented to demonstrate this strategy.

Keywords Stochastic partial differential equation (SPDE)      stochastic modeling      impact of unresolved scales on resolved scales      model error      large eddy simulation (LES)      fractional Brownian motion (fBM)     
Corresponding Author(s): DUAN Jinqiao,Email:duan@iit.edu   
Issue Date: 05 September 2009
 Cite this article:   
Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0027-3
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/425
1 Arnold L. Random Dynamical Systems. New York: Springer-Verlag, 1998
2 Arnold L. Hasselmann’s program visited: The analysis of stochasticity in deterministic climate models. In: von Storch J-S, Imkeller P, eds. Stochastic Climate Models . Boston: Birkh?user, 2001, 141-158
3 Berloff P S. Random-forcing model of the mesoscale oceanic eddies. J Fluid Mech , 2005, 529: 71-95
doi: 10.1017/S0022112005003393
4 Berselli L C, Iliescu T, Layton W J. Mathematics of Large Eddy Simulation of Turbulent Flows. Berlin: Springer-Verlag , 2005
5 Craigmile P F. Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. J Time Series Anal , 2003, 24: 505-511
doi: 10.1111/1467-9892.00318
6 Du A, Duan J. A stochastic approach for parameterizing unresolved scales in a system with memory. Journal of Algorithms & Computational Technology (to appear)
7 Duan J, Nadiga B. Stochastic parameterization of large eddy simulation of geophysical ?ows. Proc American Math Soc , 2007, 135: 1187-1196
doi: 10.1090/S0002-9939-06-08631-X
8 Duncan T E, Hu Y Z, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion. I: Theory. SIAM Journal on Control and Optimization , 2000, 38: 582-612
doi: 10.1137/S036301299834171X
9 Francfort G A, Suquet P M. Homogenization and mechanical dissipation in thermoviscoelasticity. Arch Ratinal Mech Anal , 1986, 96: 879-895
doi: 10.1007/BF00251909
10 Garcia-Ojalvo J, Sancho J M. Noise in Spatially Extended Systems. Berlin: Springer, 1999
11 Giorgi C, Marzocchi A, Pata V. Asymptotic behavior of a similinear problem in heat conduction with memory. NoDEA Nonl Diff Equa Appl , 1998, 5: 333-354
doi: 10.1007/s000300050049
12 Hasselmann K. Stochastic climate models: Part I. Theory. Tellus , 1976, 28: 473-485
13 Horsthemke W, Lefever R. Noise-Induced Transitions. Berlin: Springer-Verlag, 1984
14 Huisinga W, Schutte C, Stuart A M. Extracting macroscopic stochastic dynamics: Model problems. Comm. Pure Appl Math , 2003, 56: 234-269
doi: 10.1002/cpa.10057
15 Just W, Kantz H, Rodenbeck C, Helm M. Stochastic modelling: replacing fast degrees of freedom by noise. J Phys, A: Math Gen , 2001, 34: 3199-3213
doi: 10.1088/0305-4470/34/15/302
16 Leith C E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys Fluids A , 1990, 2: 297-299
doi: 10.1063/1.857779
17 Lin J W-B, Neelin J D. Considerations for stochastic convective parameterization. J Atmos Sci , 2002, 59(5): 959-975
doi: 10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2
18 Majda A J, Timofeyev I, Vanden-Eijnden E. Models for stochastic climate prediction. PNAS , 1999, 96: 14687-14691
doi: 10.1073/pnas.96.26.14687
19 Marchenko V A, Khruslov E Y. Homogenization of Partial Differential Equations. Boston: Birkh?user , 2006
20 Maslowski B, Schmalfuss B. Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stoch Anal Appl (to appear)
21 Mason P J, Thomson D J. Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech , 1992, 242: 51-78
doi: 10.1017/S0022112092002271
22 Mehrabi A R, Rassamdana H, Sahimi M. Characterization of long-range correlation in complex distributions and pro?les. Physical Review E , 1997, 56: 712
doi: 10.1103/PhysRevE.56.712
23 Memin J, Mishura Y, Valkeila E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat & Prob Lett , 2001, 51: 197-206
doi: 10.1016/S0167-7152(00)00157-7
24 Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech , 2000, 32: 1-32
doi: 10.1146/annurev.fluid.32.1.1
25 Nualart D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemporary Mathematics , 2003, 336: 3-39
26 Palmer T N, Shutts G J, Hagedorn R, Doblas-Reyes F J, Jung T, Leutbecher M. Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci , 2005, 33: 163-193
doi: 10.1146/annurev.earth.33.092203.122552
27 Pasquero C, Tziperman E. Statistical parameterization of heterogeneous oceanic convection. J Phys Oceanography , 2007, 37: 214-229
doi: 10.1175/JPO3008.1
28 Penland C, Sura P. Sensitivity of an ocean model to “details” of stochastic forcing. In: Proc ECMWF Workshop on Representation of Subscale Processes using Stochastic-Dynamic Models. Reading , England, 6-8 June2005
29 Peters H, Jones W E. Bottom layer turbulence in the red sea out?ow plume. J Phys Oceanography , 2006, 36: 1763-1785
doi: 10.1175/JPO2939.1
30 Peters H, Lee C M, Orlic M, Dorman C E. Turbulence in the wintertime northern Adriatic sea under strong atmospheric forcing. J Geophys Res (to appear)
31 Pipiras V, Taqqu M S. Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion. Fractals , 2000, 8(4): 369-384
doi: 10.1142/S0218348X00000408
32 Rozovskii B L. Stochastic Evolution Equations. Boston: Kluwer Acad Publishers, 1990
33 Sagaut P. Large Eddy Simulation for Incompressible Flows. 3rd Ed. New York: Springer, 2005
34 Sardeshmukh P. Issues in stochastic parameterisation. In: Proc ECMWFWorkshop on Representation of Subscale Processes using Stochastic-Dynamic Models. Reading , England, 6-8 June2005
35 Schumann U. Stochastic backscatter of turbulent energy and scalar variance by random subgrid-scale ?uxes. Proc R Soc Lond A , 1995, 451: 293-318
doi: 10.1098/rspa.1995.0126
36 Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: SIAM , 2004
37 Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probability Theory and Related Fields , 2003, 127(2): 186-204
38 Trefethen L N. Spectral Methods in Matlab. Philadelphia: SIAM , 2000
39 Waymire E, Duan J, eds. Probability and Partial Differential Equations in Modern Applied Mathematics. New York: Springer-Verlag , 2005
40 Wilks D S. Effects of stochastic parameterizations in the Lorenz ’96 system. Q J R Meteorol Soc , 2005, 131: 389-407
doi: 10.1256/qj.04.03
41 Williams P D. Modelling climate change: the role of unresolved processes. Phil Trans R Soc A , 2005363: 2931-2946
42 Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer, 1996
[1] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[2] Shaoqin ZHANG. Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations[J]. Front. Math. China, 2016, 11(2): 461-496.
[3] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[4] Yong REN,Tingting HOU,R. SAKTHIVEL. Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay[J]. Front. Math. China, 2015, 10(2): 351-365.
[5] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[6] BO Lijun, WANG Yongjin, YAN Liqing. Higher-order stochastic partial differential equations with branching noises[J]. Front. Math. China, 2008, 3(1): 15-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed