Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 463-482    https://doi.org/10.1007/s11464-009-0029-1
RESEARCH ARTICLE
Almost periodic solutions for a class of higher dimensional Schr?dinger equations
Jiansheng GENG()
Department of Mathematics and Institute of Mathematical Science, Nanjing University, Nanjing 210093, China
 Download: PDF(247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we show that there are almost periodic solutions corresponding to full dimensional invariant tori for higher dimensional Schr?odinger equations with Fourier multiplier iutu+Mξu+f(|u|2)u = 0, subject to periodic boundary conditions, where the nonlinearity f is a realanalytic function near u = 0 with f(0) = 0.The proof is based on an improved infinite dimensional KAM theorem.

Keywords Schrodinger equation      almost-periodic solution      KAM method     
Corresponding Author(s): GENG Jiansheng,Email:jgeng@nju.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Jiansheng GENG. Almost periodic solutions for a class of higher dimensional Schr?dinger equations[J]. Front Math Chin, 2009, 4(3): 463-482.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0029-1
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/463
1 Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices , 1994, 11: 475-497
doi: 10.1155/S1073792894000516
2 Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal , 1995, 5: 629-639
doi: 10.1007/BF01902055
3 Bourgain J. Construction of approximative and almost periodic solutions of perturbed linear Schr?dinger and wave equations. Geom Funct Anal , 1996, 6: 201-230
doi: 10.1007/BF02247885
4 Bourgain J. Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schr?dinger equations. Annals of Mathematics , 1998, 148: 363-439
doi: 10.2307/121001
5 Bourgain J. Nonlinear Schr?dinger Equations. Park City Series 5 . Providence: American Mathematical Society, 1999
6 Bourgain J. On invariant tori of full dimension for 1D periodic NLS. J Funct Anal , 2005, 229: 62-94
doi: 10.1016/j.jfa.2004.10.019
7 Bourgain J. Green’s Function Estimates for Lattice Schr?dinger Operators and Applications. Annals of Mathematics Studies, Vol 158 . Princeton: Princeton University Press, NJ, 2005
8 Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math , 1993, 46: 1409-1498
doi: 10.1002/cpa.3160461102
9 Eliasson H L, Kuksin S B. KAM for the non-linear Schr?dinger equation. Annals of Mathematics (to appear)
10 Geng J, You J. KAM tori of Hamiltonian perturbations of 1D linear beam equations. J Math Anal Appl , 2003, 277: 104-121
doi: 10.1016/S0022-247X(02)00505-X
11 Geng J, You J. A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun Math Phys , 2006, 262: 343-372
doi: 10.1007/s00220-005-1497-0
12 Geng J, You J. KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity , 2006, 19: 2405-2423
doi: 10.1088/0951-7715/19/10/007
13 Kuksin S B. Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, Vol 1556 . Berlin: Springer, 1993
14 Kuksin S B, P?schel J. Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schr?dinger equation. Ann Math , 1996, 143: 149-179
doi: 10.2307/2118656
15 Niu H, Geng J. Almost periodic solutions for a class of higher-dimensional beam equations. Nonlinearity , 2007, 20: 2499-2517
doi: 10.1088/0951-7715/20/11/003
16 P?schel J. Quasi-periodic solutions for a nonlinear wave equation. Comment Math Helvetici , 1993, 71: 269-296
doi: 10.1007/BF02566420
17 P?schel J. A KAM theorem for some nonlinear partial differential equations. Ann Sc Norm sup Pisa CI sci , 1996, 23: 119-148
18 P?schel J. On the construction of almost periodic solutions for a nonlinear Schr?dinger equations. Ergod Th and Dynam Syst , 2002, 22: 1537-1549
19 Yuan X. A KAM theorem with applications to partial differential equations of higher dimensions. Commun Math Phys , 2007, 275: 97-137
doi: 10.1007/s00220-007-0287-2
[1] GUI Changfeng. Hamiltonian constants for several new entire solutions[J]. Front. Math. China, 2008, 3(2): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed