Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (1) : 47-63    https://doi.org/10.1007/s11464-009-0048-y
Research articles
Algorithms for core stability, core largeness, exactness, and extendability of flow games
Qizhi FANG1,Rudolf FLEISCHER2,Jian LI3,Xiaoxun SUN4,
1.Department of Mathematics, Ocean University of China, Qingdao 266100, China; 2.Department of Computer Science and Engineering, Fudan University, Shanghai 200433, China; 3.Department of Computer Science, University of Maryland, College Park, MD 20742, USA; 4.Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350, Australia;
 Download: PDF(424 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study core stability and some related properties of flow games defined on simple networks (all edge capacities are equal) from an algorithmic point of view. We first present a sufficient and necessary condition that can be tested efficiently for a simple flow game to have a stable core. We also prove the equivalence of the properties of core largeness, extendability, and exactness of simple flow games and provide an equivalent graph theoretic characterization which allows us to decide these properties in polynomial time.
Keywords Flow network      series-parallel graph      imputation      cooperative game      
Issue Date: 05 March 2010
 Cite this article:   
Qizhi FANG,Jian LI,Rudolf FLEISCHER, et al. Algorithms for core stability, core largeness, exactness, and extendability of flow games[J]. Front. Math. China, 2010, 5(1): 47-63.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0048-y
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I1/47
Bietenhader T, Okamoto Y. Core stability of minimumcoloring games. In: Proceedings of 30th InternationalWorkshop on Graph-Theoretic Concept in Computer Science. Lecture Notes in Computer Science, Vol 3353. 2004, 389―401
Biswas A K, Parthasarathy T, Potters J A M, Voorneveld M. Largecores and exactness. Game and EconomicBehavior, 1999, 28: 1―12

doi: 10.1006/game.1998.0686
Deng X, Ibaraki T, Nagamochi H. Algorithmic aspects of the core of combinatorial optimizationgames. Mathematics of Operations Research, 1999, 24: 751―766

doi: 10.1287/moor.24.3.751
Deng X, Fang Q, Sun X. Finding nucleolus of flow game. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA’06). 2006, 124―131
Deng X, Papadimitriou CH. On the complexityof cooperative solution concepts. Mathematicsof Operations Research, 1994, 19: 257―266

doi: 10.1287/moor.19.2.257
Duffin R. Topologyof series-parallel networks. Journal ofMathematical Analysis and Applications, 1965, 10: 303―318

doi: 10.1016/0022-247X(65)90125-3
Even S, Tarjan R E. Network flow and testinggraph connectivity. SIAM J Comput, 1975, 4: 507―518

doi: 10.1137/0204043
Fang Q, Fleischer R, Li J, Sun X. Algorithmsfor core stability, core largeness, exactness and extendability offlow games. In: Proceedings of the 13thAnnual International Computing and Combinatorics Conference. 2007, 439―447
Fang Q, Zhu S, Cai M, Deng X. Membershipfor core of LP games and other games. In: Lecture Notes in Computer Science, Vol 2108. 2001, 247―256
Ford L R, Fulkerson D R. Flows in Networks. Princeton: Princeton University Press, 1962
van Gellekom J R G, Potters J A M, Reijnierse J H. Prosperity properties of TUgames. International Journal of Game Theory, 1999, 28: 211―227

doi: 10.1007/s001820050106
Jakoby A, Liskiewicz M, Reischuk R. Space efficient algorithms for directed seriesparallelgraphs. Journal of Algorithms, 2006, 60: 85―114

doi: 10.1016/j.jalgor.2004.06.010
Kalai E, Zemel E. Totally balanced games andgames of flow. Mathematics of OperationsResearch, 1982, 7: 476―478

doi: 10.1287/moor.7.3.476
Kalai E, Zemel E. Generalized network problemsyielding totally balanced games. OperationsResearch, 1982, 30: 998―1008

doi: 10.1287/opre.30.5.998
Lucas W F. A game with no solution. Bulletin of theAmerican Mathematical Society, 1968, 74: 237―239

doi: 10.1090/S0002-9904-1968-11901-9
von Neumann J, Morgenstern O. Theory of Games and EconomicBehaviour. Princeton: Princeton University Press, 1944
Schrijver A. CombinatorialOptimization: Polyhedra and Efficiency. Berlin: Springer-Verlag, 2003
Shapley L S. Cores and convex games. InternationalJournal of Game Theory, 1971, 1: 11―26

doi: 10.1007/BF01753431
Sharkey W W. Cooperative games with large cores. InternationalJournal of Game Theory, 1982, 11: 175―182

doi: 10.1007/BF01755727
Solymosi T, Raghavan T E S. Assignment games with stablecores. International Journal of Game Theory, 2001, 30: 177―185

doi: 10.1007/s001820100072
Sun X, Fang Q. Core stability of flow games. In: Proceedings of the 2005 China-Japan Conferenceon Discrete Geometry, Combinatorics and Graph Theory. 2007, 189―199
Tholey T. Solvingthe 2-disjoint paths problem in nearly linear time. Theory of Computing Systems, 2006, 39: 51―78

doi: 10.1007/s00224-005-1256-9
Valdes J, Tarjan R E, Lawler E L. The recognition of series-parallel digraphs. In: Proceedings of the 11th Annual ACM Symposiumon Theory of Computing (STOC’79). 1979, 1―12
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed