Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (1) : 123-160    https://doi.org/10.1007/s11464-009-0054-0
Research articles
Approximation of kernel matrices by circulant matrices and its application in kernel selection methods
Guohui SONG1,Yuesheng XU2, 3,
1.Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA; 2.Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA;School of Mathematics and Computational Sciences, Sun Yat-sen University, Guangzhou 510275, China; 3.2010-03-15 9:33:37;
 Download: PDF(370 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper focuses on developing fast numerical algorithms for selection of a kernel optimal for a given training data set. The optimal kernel is obtained by minimizing a cost functional over a prescribed set of kernels. The cost functional is defined in terms of a positive semi-definite matrix determined completely by a given kernel and the given sampled input data. Fast computational algorithms are developed by approximating the positive semi-definite matrix by a related circulant matrix so that the fast Fourier transform can apply to achieve a linear or quasi-linear computational complexity for finding the optimal kernel. We establish convergence of the approximation method. Numerical examples are presented to demonstrate the approximation accuracy and computational efficiency of the proposed methods.
Keywords Optimal kernel      reproducing kernel      reproducing kernel Hilbert space      learning with kernel      circulant matrix      B-spline kernel      
Issue Date: 05 March 2010
 Cite this article:   
Guohui SONG,管理员,Yuesheng XU. Approximation of kernel matrices by circulant matrices and its application in kernel selection methods[J]. Front. Math. China, 2010, 5(1): 123-160.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0054-0
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I1/123
Argyriou A, Micchelli C A, Pontil M, Ying Y. A spectralregularization framework for multi-task structure learning. NIPS, 2008, 20: 25―32
Aronszajn N. Theoryof reproducing kernels. Trans Amer MathSoc, 1950, 68: 337―404

doi: 10.2307/1990404
Bhatia R. MatrixAnalysis. New York: Springer, 1997
Bochner S. Lectureson Fourier Integrals. Princeton: Princeton University Press, 1959
de Boor C. APractical Guide to Splines. New York: Springer-Verlag, 1978
Bousquet O, Herrmann D J L. On the complexity of learningthe kernel matrix. NIPS, 2003, 15: 399―406
Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46: 131―159

doi: 10.1023/A:1012450327387
Cormen T H, Leiserson C E, Rivest R L, Stein C. Introductionto Algorithms. Boston: MIT Press, 2001
Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola J. On kernel-target alignment. NIPS, 2002, 14: 367―373
Cucker F, Smale S. On the mathematical foundationsof learning. Bull Amer Math Soc, 2002, 39: 1―49

doi: 10.1090/S0273-0979-01-00923-5
Davis P J. Circulant Matrices. New York: John Wiley & SonsInc, 1979
Demko S, Moss W, Smith P. Decay rates for inverses of band matrices. Math Comput, 1984, 43: 491―499

doi: 10.2307/2008290
Drucker H, Wu D, Vapnik V N. Support vector machines for span categorization. IEEE Trans Neural Networks, 1999, 10: 1048―1054

doi: 10.1109/72.788645
Durrett R. Probability:Theory and Examples. Belmont: Duxbury Press, 1996
Gasquet C, Witomski P. Fourier Analysis and Applications. New York: Springer-Verlag, 1999
Gelfand I, Raikov D, Shilov G. Commutative Normed Rings. Bronx: Chelsea Publishing Company, New York, 1964
Gray R M. Toeplitz and Circulant Matrices: A Review. Boston: Now Publishers Inc, 2006
Grenander U, Szegö G. Toeplitz Forms and TheirApplications. Berkeley and Los Angeles: University of Calif Press, 1958
Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1986
Kimeldorf G, Wahba G. Some results on Tchebycheffianspline functions. J Math Anal Appl, 1971, 33: 82―95

doi: 10.1016/0022-247X(71)90184-3
Lanckriet G R G, Cristianini N, Bartlett P, El Ghaoui L, Jordan M I. Learning the kernel matrixwith semi-definite programming. J MachLearn Res, 2004, 5: 27―72
Lin Y, Brown L D. Statistical properties ofthe method of regularization with periodic Gaussian reproducing kernel. Ann Statis, 2004, 32: 1723―1743

doi: 10.1214/009053604000000454
Micchelli C A, Pontil M. Learning the kernel functionvia regularization. J Mach Learn Res, 2005, 6: 1099―1125
Micchelli C A, Pontil M. On learning vector-valuedfunctions. Neural Comput, 2005, 17: 177―204

doi: 10.1162/0899766052530802
Müller K-R, Smola A J, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V N. Predicting time series with support vector machines. Lecture Notes in Computer Science, 1997, 1327: 999―1004

doi: 10.1007/BFb0020283
Schölkopf B, Smola A J. Learning with Kernels: SupportVector Machines, Regularization, Optimization, and Beyond. Cambridge: MITPress, 2004
Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognitionwith cortex-like mechanisms. IEEE TransPattern Analysis and Machine Intelligence, 2007, 29: 411―426

doi: 10.1109/TPAMI.2007.56
Shawe-Taylor J, Cristianini N. Kernel Methods for PatternAnalysis. Cambridge: Cambridge University Press, 2004
Smola A J, Schölkopf B. On a kernel-based methodfor pattern recognition, regression, approximation, and operator inversion. Algorithmica, 1998, 22: 211―231

doi: 10.1007/PL00013831
Sung K K, Poggio T. Example-based learning forview-based human face detection. IEEE TransPattern Analysis and Machine Intelligence, 1998, 20: 39―51

doi: 10.1109/34.655648
Vapnik V N. Statistical Learning Theory. New York: Wiley, 1998
Xu Y, Zhang H. Refinable kernels. J Mach Learn Res, 2007, 8: 2083―2120
Xu Y, Zhang H. Refinement of reproducingkernels. J Mach Learn Res, 2009, 10: 137―170
Ying Y, Zhou D X. Learnability of Gaussianswith flexible variances. J Mach Learn Res, 2007, 8: 249―276
[1] Mehmet GÜRDAL, Ula¸s YAMANCI, Mübariz GARAYEV. Some results for operators on a model space[J]. Front. Math. China, 2018, 13(2): 287-300.
[2] LV Xuebin, HUANG Zhiyuan, WAN Jianping. Fractional Levy processes on Gel'fand triple and stochastic integration[J]. Front. Math. China, 2008, 3(2): 287-303.
[3] SUN Hongwei. Behavior of a functional in learning theory[J]. Front. Math. China, 2007, 2(3): 455-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed