Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (2) : 231-240    https://doi.org/10.1007/s11464-011-0104-2
RESEARCH ARTICLE
On quantum cluster algebras of finite type
Ming DING()
Institute for Advanced Study, Tsinghua University, Beijing 100084, China
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We extend the definition of a quantum analogue of the Caldero-Chapoton map defined by D. Rupel. When Q is a quiver of finite type, we prove that the algebra ??|k|(Q) generated by all cluster characters is exactly the quantum cluster algebra ??|k|(Q).

Keywords Cluster variable      quantum cluster algebra     
Corresponding Author(s): DING Ming,Email:m-ding04@mails.tsinghua.edu.cn   
Issue Date: 01 April 2011
 Cite this article:   
Ming DING. On quantum cluster algebras of finite type[J]. Front Math Chin, 2011, 6(2): 231-240.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0104-2
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I2/231
1 Berenstein A, Fomin S, Zelevinsky A. Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math J , 2005, 126: 1-52
doi: 10.1215/S0012-7094-04-12611-9
2 Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math , 2006, 204: 572-618
doi: 10.1016/j.aim.2005.06.003
3 Berenstein A, Zelevinsky A. Quantum cluster algebras. Adv Math , 2005, 195: 405-455
doi: 10.1016/j.aim.2004.08.003
4 Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv , 2006, 81: 595-616
doi: 10.4171/CMH/65
5 Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math , 2008, 172(1): 169-211
doi: 10.1007/s00222-008-0111-4
6 Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937 [math.RT]
7 Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. arXiv:1004.2349v4 [math.RT]
8 Ding M, Xu F. The multiplication theorem and bases in finite and affine quantum cluster algebras. arXiv:1006.3928v3 [math.RT]
9 Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc , 2002, 15(2): 497-529
doi: 10.1090/S0894-0347-01-00385-X
10 Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math , 2003, 154(1): 63-121
doi: 10.1007/s00222-003-0302-y
11 Geiss C, Leclerc B, Schr?er J. Kac-Moody groups and cluster algebras. arXiv:1001.3545v2 [math.RT]
12 Geiss C, Leclerc B, Schr?er J. Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781v2 [math.RT]
13 Grabowski J, Launois S. Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases. Int Math Res Notices , 2010,
doi: 10.1093/imrn/rnq153
14 Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint , 2005
15 Lampe P. A quantum cluster algebra of Kronecker type and the dual canonical basis. Int Math Res Notices , 2010,
doi: 10.1093/imrn/rnq162
16 Qin F. Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA]
17 Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices , 2010,
doi: 10.1093/imrn/rnq192
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed