Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (6) : 1249-1263    https://doi.org/10.1007/s11464-011-0127-8
RESEARCH ARTICLE
Identifiability of causal effects on a binary outcome within principal strata
Wei YAN1, Peng DING1, Zhi GENG1(), Xiaohua ZHOU2,3,4
1. School of Mathematical Sciences, Peking University, Beijing 100871, China; 2. Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China; 3. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; 4. Biostatistics Unit, HSR&D Center of Excellence, VA Puget Sound Health Care System, Seattle, WA 98101, USA
 Download: PDF(163 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Principal strata are defined by the potential values of a posttreatment variable, and a principal effect is a causal effect within a principal stratum. Identifying the principal effect within every principal stratum is quite challenging. In this paper, we propose an approach for identifying principal effects on a binary outcome via a pre-treatment covariate. We prove the identifiability with single post-treatment intervention under the monotonicity assumption. Furthermore, we discuss the local identifiability with multicomponent intervention. Simulations are performed to evaluate our approach. We also apply it to a real data set from the Improving Mood-Promoting Access to Collaborate Treatment program.

Keywords Causal inference      identifiability      principal effect      multi-component intervention     
Corresponding Author(s): GENG Zhi,Email:zgeng@math.pku.edu.cn   
Issue Date: 01 December 2011
 Cite this article:   
Wei YAN,Peng DING,Zhi GENG, et al. Identifiability of causal effects on a binary outcome within principal strata[J]. Front Math Chin, 2011, 6(6): 1249-1263.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0127-8
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I6/1249
1 Everitt B S, Hand D J. Finite Mixture Distributions. London: Chapman and Hall, 1981
2 Frangakis C E, Rubin D B. Principal stratification in causal inference. Biometrics , 2002, 58: 21-29
doi: 10.1111/j.0006-341X.2002.00021.x
3 Gelman A, Carlin J B, Stern H S, Rubin D B. Bayesian Data Analysis. 2nd ed. London: Chapman and Hall/CRC, 2004
4 Goodman L A. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika , 1974, 61: 215-231
doi: 10.1093/biomet/61.2.215
5 Holland P. Statistics and causal inference. J Amer Statist Assoc , 1986, 81(396): 945-960
doi: 10.2307/2289064
6 Roche K B, Miglioretti D L, Zeger S L, Rathouz P J. Latent variable regression for multiple discrete outcomes. J Amer Statist Assoc , 1997, 92: 1375-1386
doi: 10.2307/2965407
7 Rubin D B. Comment on “Randomization analysis of experimental data: the Fisher randomization test” by D. Basu. J Amer Statist Assoc , 1980, 75: 591-593
doi: 10.2307/2287653
8 Rubin D B. Comments on “Statistics and causal inference” by Paul Holland: Which ifs have causal answers. J Amer Statist Assoc , 1986, 81: 961-962
doi: 10.2307/2289065
9 Rubin D B. Direct and indirect causal effects via potential outcomes. Scand J Stat , 2004, 31: 161-170
doi: 10.1111/j.1467-9469.2004.02-123.x
10 Zhang J L, Rubin D B, Mealli F. Likelihood-based analysis of causal effects via principal stratification: new approach to evaluating job-training programs. J Amer Statist Assoc , 2009, 104: 166-176
doi: 10.1198/jasa.2009.0012
[1] Wanlu DENG, Zhi GENG, Peng LUO. Identifiability of intermediate variables on causal paths[J]. Front Math Chin, 2013, 8(3): 517-539.
[2] Na SHAN, Jianhua GUO. Covariate selection for identifying the effects of a particular type of conditional plan using causal networks[J]. Front Math Chin, 2010, 5(4): 687-700.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed