|
|
A simple existence proof of Schubart periodic orbit with arbitrary masses |
Duokui YAN( ) |
School of Mathematics and System Sciences, Beijing University of Aeronautics & Astronautics, Beijing 100191, China |
|
|
Abstract This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A “turning point” technique is introduced to exclude the possibility of extra collisions and the existence of this orbit follows by a continuity argument on differential equations generated by the regularized Hamiltonian.
|
Keywords
Celestial mechanics
Schubart periodic orbit
three-body problem
binary collision
periodic solution with singularity
regularization
|
Corresponding Author(s):
YAN Duokui,Email:duokuiyan@gmail.com
|
Issue Date: 01 February 2012
|
|
1 |
Aarseth S J, Zare K. A regularization of the three-body problem. Celest Mech , 1974, 10: 185-205 doi: 10.1007/BF01227619
|
2 |
Bakker L, Ouyang T, Roberts G, Yan D, Simmons S. Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem. Celestial Mech Dynam Astronom , 2010, 108: 147-164 doi: 10.1007/s10569-010-9298-y
|
3 |
Bakker L, Ouyang T, Yan D, Simmons S. Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric fourbody problem. Celestial Mech Dynam Astronom , 2011, 110: 271-290 doi: 10.1007/s10569-011-9358-y
|
4 |
Chenciner A, Montgomery R. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann of Math , 2000, 152: 881-901 doi: 10.2307/2661357
|
5 |
Conley C. The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow. SIAM J Appl Math , 1968, 16: 620-625 doi: 10.1137/0116050
|
6 |
Hénon M. Stability and interplay motions. Celestial Mech Dynam Astronom , 1997, 15: 243-261
|
7 |
Hietarinta J, Mikkola S. Chaos in the one-dimensional gravitational three-body problem. Chaos , 1993, 3: 183-203 doi: 10.1063/1.165984
|
8 |
Hu X, Sun S. Index and stability of symmetric periodic orbits in Hamiltonian system with application to figure-eight orbit. Commun Math Phys , 2009, 290: 737-777 doi: 10.1007/s00220-009-0860-y
|
9 |
Hu X, Sun S. Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv Math , 2010, 223: 98-119 doi: 10.1016/j.aim.2009.07.017
|
10 |
Long Y. Index Theory for Symplectic Paths with Applications. Basel-Boston-Berlin: Birkh?user Verlag , 2002 doi: 10.1007/978-3-0348-8175-3
|
11 |
Moeckel R. A topological existence proof for the Schubart orbits in the collinear threebody problem. Discrete Contin Dyn Syst Ser B , 2008, 10: 609-620 doi: 10.3934/dcdsb.2008.10.609
|
12 |
Moore C. Braids in classical dynamics. Phys Rev Lett , 1993, 70: 3675-3679 doi: 10.1103/PhysRevLett.70.3675
|
13 |
Ouyang T, Simmons S, Yan D. Periodic solutions with singularities in two dimensions in the n-body problem. Rocky Mountain J of Math (to appear)
|
14 |
Ouyang T, Yan D. Periodic solutions with alternating singularities in the collinear fourbody problem. Celestial Mech Dynam Astronom , 2011, 109: 229-239 doi: 10.1007/s10569-010-9325-z
|
15 |
Roberts G. Linear stability of the elliptic Lagrangian triangle solutions in the threebody problem. J Differential Equations , 2002, 182: 191-218 doi: 10.1006/jdeq.2001.4089
|
16 |
Roberts G. Linear stability analysis of the figure-eight orbit in the three-body problem. Ergodic Theory Dynam Systems , 2007, 27: 1947-1963 doi: 10.1017/S0143385707000284
|
17 |
Schubart J. Numerische aufsuchung periodischer l?sungen im dreik?rperproblem. Astron Narchr , 1956, 283: 17-22 doi: 10.1002/asna.19562830105
|
18 |
Shibayama M. Minimizing periodic orbits with regularizable collisions in the n-body problem. Arch Ration Mech Anal , 2011, 199: 821-841 doi: 10.1007/s00205-010-0334-6
|
19 |
Venturelli A. A variational proof for the existence of Von Schubart’s orbit. Discrete Contin Dyn Syst Ser B , 10: 699-717
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|