Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (1) : 145-160    https://doi.org/10.1007/s11464-012-0171-z
RESEARCH ARTICLE
A simple existence proof of Schubart periodic orbit with arbitrary masses
Duokui YAN()
School of Mathematics and System Sciences, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A “turning point” technique is introduced to exclude the possibility of extra collisions and the existence of this orbit follows by a continuity argument on differential equations generated by the regularized Hamiltonian.

Keywords Celestial mechanics      Schubart periodic orbit      three-body problem      binary collision      periodic solution with singularity      regularization     
Corresponding Author(s): YAN Duokui,Email:duokuiyan@gmail.com   
Issue Date: 01 February 2012
 Cite this article:   
Duokui YAN. A simple existence proof of Schubart periodic orbit with arbitrary masses[J]. Front Math Chin, 2012, 7(1): 145-160.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0171-z
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I1/145
1 Aarseth S J, Zare K. A regularization of the three-body problem. Celest Mech , 1974, 10: 185-205
doi: 10.1007/BF01227619
2 Bakker L, Ouyang T, Roberts G, Yan D, Simmons S. Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem. Celestial Mech Dynam Astronom , 2010, 108: 147-164
doi: 10.1007/s10569-010-9298-y
3 Bakker L, Ouyang T, Yan D, Simmons S. Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric fourbody problem. Celestial Mech Dynam Astronom , 2011, 110: 271-290
doi: 10.1007/s10569-011-9358-y
4 Chenciner A, Montgomery R. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann of Math , 2000, 152: 881-901
doi: 10.2307/2661357
5 Conley C. The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow. SIAM J Appl Math , 1968, 16: 620-625
doi: 10.1137/0116050
6 Hénon M. Stability and interplay motions. Celestial Mech Dynam Astronom , 1997, 15: 243-261
7 Hietarinta J, Mikkola S. Chaos in the one-dimensional gravitational three-body problem. Chaos , 1993, 3: 183-203
doi: 10.1063/1.165984
8 Hu X, Sun S. Index and stability of symmetric periodic orbits in Hamiltonian system with application to figure-eight orbit. Commun Math Phys , 2009, 290: 737-777
doi: 10.1007/s00220-009-0860-y
9 Hu X, Sun S. Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv Math , 2010, 223: 98-119
doi: 10.1016/j.aim.2009.07.017
10 Long Y. Index Theory for Symplectic Paths with Applications. Basel-Boston-Berlin: Birkh?user Verlag , 2002
doi: 10.1007/978-3-0348-8175-3
11 Moeckel R. A topological existence proof for the Schubart orbits in the collinear threebody problem. Discrete Contin Dyn Syst Ser B , 2008, 10: 609-620
doi: 10.3934/dcdsb.2008.10.609
12 Moore C. Braids in classical dynamics. Phys Rev Lett , 1993, 70: 3675-3679
doi: 10.1103/PhysRevLett.70.3675
13 Ouyang T, Simmons S, Yan D. Periodic solutions with singularities in two dimensions in the n-body problem. Rocky Mountain J of Math (to appear)
14 Ouyang T, Yan D. Periodic solutions with alternating singularities in the collinear fourbody problem. Celestial Mech Dynam Astronom , 2011, 109: 229-239
doi: 10.1007/s10569-010-9325-z
15 Roberts G. Linear stability of the elliptic Lagrangian triangle solutions in the threebody problem. J Differential Equations , 2002, 182: 191-218
doi: 10.1006/jdeq.2001.4089
16 Roberts G. Linear stability analysis of the figure-eight orbit in the three-body problem. Ergodic Theory Dynam Systems , 2007, 27: 1947-1963
doi: 10.1017/S0143385707000284
17 Schubart J. Numerische aufsuchung periodischer l?sungen im dreik?rperproblem. Astron Narchr , 1956, 283: 17-22
doi: 10.1002/asna.19562830105
18 Shibayama M. Minimizing periodic orbits with regularizable collisions in the n-body problem. Arch Ration Mech Anal , 2011, 199: 821-841
doi: 10.1007/s00205-010-0334-6
19 Venturelli A. A variational proof for the existence of Von Schubart’s orbit. Discrete Contin Dyn Syst Ser B , 10: 699-717
[1] LU Shuai, WANG Yanbo. First and second order numerical differentiation with Tikhonov regularization[J]. Front. Math. China, 2006, 1(3): 354-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed