Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (5) : 1005-1018    https://doi.org/10.1007/s11464-012-0184-7
RESEARCH ARTICLE
List edge and list total coloring of 1-planar graphs
Xin ZHANG, Jianliang WU, Guizhen LIU()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(164 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that each 1-planar graph with maximum degree Δ is (Δ+1)-edge-choosable and (Δ+2)- total-choosable if Δ≥16, and is Δ-edge-choosable and (Δ+1)-total-choosable if Δ≥21. The second conclusion confirms the list coloring conjecture for the class of 1-planar graphs with large maximum degree.

Keywords 1-planar graph      list coloring conjecture      discharging     
Corresponding Author(s): LIU Guizhen,Email:gzliu@sdu.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Xin ZHANG,Jianliang WU,Guizhen LIU. List edge and list total coloring of 1-planar graphs[J]. Front Math Chin, 2012, 7(5): 1005-1018.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0184-7
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I5/1005
1 Albertson M O, Mohar B. Coloring vertices and faces of locally planar graphs. Graphs Combin , 2006, 22: 289-295
doi: 10.1007/s00373-006-0653-4
2 Bondy J A, Murty U S R. Graph Theory with Applications. New York: North-Holland, 1976
3 Borodin O V. Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs. Diskret Analiz , 1984, 41: 12-26 (in Russian)
4 Borodin O V. An extension of Kotzig theorem and the list edge coloring of planar graphs. Mat Zametki , 1990, 48: 22-48 (in Russian)
5 Borodin O V. A new proof of the 6 color theorem. J Graph Theory , 1995, 19(4): 507-521
doi: 10.1002/jgt.3190190406
6 Borodin O V, Dmitriev I G, Ivanova A O. The height of a 4-cycle in triangle-free 1-planar graphs with minimum degree 5. J Appl Ind Math , 2009, 3(1): 28-31
doi: 10.1134/S1990478909010049
7 Borodin O V, Kostochka A V, Raspaud A, Sopena E. Acyclic colouring of 1-planar graphs. Discrete Appl Math , 2001, 114: 29-41
doi: 10.1016/S0166-218X(00)00359-0
8 Borodin O V, Kostochka A V, Woodall D R. List edge and list total colourings of multigraphs. J Combin Theory Ser B , 1997, 71: 184-204
doi: 10.1006/jctb.1997.1780
9 Fabrici I, Madaras T. The structure of 1-planar graphs. Discrete Math , 2007, 307: 854-865
doi: 10.1016/j.disc.2005.11.056
10 Harris A J. Problems and Conjectures in Extremal Graph Theory. . Cambridge: Cambridge University, 1984
11 Hou J, Liu G, Wu J L. Some results on list total colorings of planar graphs. Lecture Notes in Computer Science , 2007, 4489: 320-328
doi: 10.1007/978-3-540-72588-6_53
12 Hudák D, Madaras T. On local structures of 1-planar graphs of minimum degree 5 and girth 4. Discuss Math Graph Theory , 2009, 29: 385-400
doi: 10.7151/dmgt.1454
13 Jensen T R, Toft B. Graph Coloring Problems. New York: John Wiley & Sons, 1995
14 Juvan M, Mohar B, ?krekovski R. List total colorings of graphs. Combin Probab Comput , 1998, 7: 181-188
doi: 10.1017/S0963548397003210
15 Juvan M, Mohar B, ?krekovski R. Graphs of degree 4 are 5-edge-choosable. J Graph Theory , 1999, 32: 250-262
doi: 10.1002/(SICI)1097-0118(199911)32:3<250::AID-JGT5>3.0.CO;2-R
16 Ringel G. Ein sechsfarbenproblem auf der Kugel. Abh Math Sem Hamburg Univ , 1965, 29: 107-117
doi: 10.1007/BF02996313
17 Suzuki Y. Optimal 1-planar graphs which triangulate other surfaces. Discrete Math , 2010, 310: 6-11
doi: 10.1016/j.disc.2009.07.016
18 Wang W, Lih K W. Choosability, edge choosability and total choosability of outerplanar graphs. Eur J Combin , 2001, 22: 71-78
doi: 10.1006/eujc.2000.0430
19 Wang W, Lih K W. Coupled choosability of plane graphs. J Graph Theory , 2008, 58: 27-44
doi: 10.1002/jgt.20292
20 Wu J L, Wang P. List-edge and list-total colorings of graphs embedded on hyperbolic surfaces. Discrete Math , 2008, 308: 6210-6215
doi: 10.1016/j.disc.2007.11.044
21 Zhang X, Liu G. On edge colorings of 1-planar graphs without adjacent triangles . Inform Process Lett , 2012, 112(4): 138-142
doi: 10.1016/j.ipl.2011.10.021
22 Zhang X, Liu G. On edge colorings of 1-planar graphs without chordal 5-cycles. Ars Combin , 2012, 104 (in press)
23 Zhang X, Liu G, Wu J L. Edge coloring of triangle-free 1-planar graphs. J Shandong Univ (Nat Sci) , 2010, 45(6): 15-17 (in Chinese)
24 Zhang X, Liu G, Wu J L. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Sci Sin Math , 2010, 40: 1025-1032 (in Chinese)
25 Zhang X, Liu G, Wu J L. On the linear arboricity of 1-planar graphs. OR Trans , 2011, 15(3): 38-44
26 Zhang X, Liu G, Wu J L. Light subgraphs in the family of 1-planar graphs with high minimum degree. Acta Math Sin (Engl Ser) ,
doi: 10.1007/s10114-011-0439-3
27 Zhang X, Wu J L. On edge colorings of 1-planar graphs. Inform Process Lett , 2011, 111(3): 124-128
28 Zhang X, Wu J L, Liu G. New upper bounds for the heights of some light subgraphs in 1-planar graphs with high minimum degree. Discrete Math Theor Comput Sci , 2011, 13(3): 9-16
29 Zhang X, Yu Y, Liu G. On (p, 1)-total labelling of 1-planar graphs. Cent Eur J Math , 2011, 9(6): 1424-1434
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed