Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (2) : 249-272    https://doi.org/10.1007/s11464-012-0189-2
RESEARCH ARTICLE
Partial expansion of a Lipschitz domain and some applications
Jay Gopalakrishnan1, Weifeng Qiu2()
1. Department of Mathematics, Portland State University, Portland, OR 97207, USA; 2. Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455, USA
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.

Keywords Lipschitz domain      regular decomposition      mixed boundary condition      transversal vector field      extension operator      Schwarz preconditioner      bounded cochain projector      divergence      curl      Sch?berl projector     
Corresponding Author(s): Qiu Weifeng,Email:qiuxa001@ima.umn.edu   
Issue Date: 01 April 2012
 Cite this article:   
Jay Gopalakrishnan,Weifeng Qiu. Partial expansion of a Lipschitz domain and some applications[J]. Front Math Chin, 2012, 7(2): 249-272.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0189-2
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I2/249
1 Amrouche C, Bernardi C, Dauge M, Girault V. Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci , 1998, 21: 823-864
doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
2 Arnold D N, Falk R S, Winther R. Preconditioning in H(div) and applications. Math Comp , 1997, 66: 957-984
doi: 10.1090/S0025-5718-97-00826-0
3 Arnold D N, Falk R S, Winther R. Finite element exterior calculus: from Hodge theory to numerical stability. Bull Amer Math Soc (NS) , 2010, 47: 281-353
doi: 10.1090/S0273-0979-10-01278-4
4 Birman M, Solomyak M. Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative. J Math Sov , 1990, 49: 1128-1136
doi: 10.1007/BF02208708
5 Bonnet-Ben Dhia A-S, Hazard C, Lohrengel S. A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J Appl Math , 1999, 59: 2028-2044 (electronic)
6 Bramble J H. A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math Models Methods Appl Sci , 2003, 13: 361-371
doi: 10.1142/S0218202503002544
7 Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics , No 15. New York: Springer-Verlag, 1991
doi: 10.1007/978-1-4612-3172-1
8 Buffa A, Costabel M, Sheen D. On traces for H(curl, Ω) in Lipschitz domains. J Math Anal Appl , 2002, 276: 845-867
doi: 10.1016/S0022-247X(02)00455-9
9 Christiansen S H, Winther R. Smoothed projections in finite element exterior calculus. Math Comp , 2008, 77: 813-829
doi: 10.1090/S0025-5718-07-02081-9
10 C?ement Ph. Approximation by finite element functions using local regularization. RAIRO, Analyse Numérique , 1975, R-2 (9e année): 77-84
11 Demkowicz L, Gopalakrishnan J, Sch?berl J. Polynomial extension operators. Part II. SIAM J Numer Anal , 2009, 47: 3293-3324
doi: 10.1137/070698798
12 Demkowicz L, Gopalakrishnan J, Sch?berl J. Polynomial extension operators. Part III. Math Comp , 2011,
doi: 10.1090/S0025-5718-2011-02536-6
13 Falk R S. Finite element methods for linear elasticity. In: Mixed Finite Elements, Compatibility Conditions, and Applications. Lectures given at the C.I.M.E. Summer School Held in Cetraro, Italy, June 26-July 1, 2006. Lecture Notes in Mathematics , Vol 1939. Berlin: Springer-Verlag, 2008, 160-194
14 Girault V, Raviart P-A. Finite ElementMethods for Navier-Stokes Equations. Springer Series in Computational Mathematics , No 5. New York: Springer-Verlag, 1986
doi: 10.1007/978-3-642-61623-5
15 Gopalakrishnan J, Oh M. Commuting smoothed projectors in weighted norms with an application to axisymmetric Maxwell equations. J Sci Comput , 2011,
doi: 10.1007/s10915-011-9513-3
16 Gopalakrishnan J, Pasciak J E. Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math Comp , 2003, 72: 1-15 (electronic)
doi: 10.1090/S0025-5718-01-01406-5
17 Grisvard P. Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics , No 24. Marshfield: Pitman Advanced Publishing Program, 1985
18 Hestenes M R. Extension of the range of a differentiable function. Duke Math J , 1941, 8: 183-192
doi: 10.1215/S0012-7094-41-00812-8
19 Hiptmair R, Li J, Zhou J. Universal extension for Sobolev spaces of differential forms and applications. Tech Rep 2009-22, Eidgen?ssische Technische Hochschule , 2009
20 Hiptmair R, Toselli A. Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. In: Parallel solution of partial differential equations (Minneapolis, MN, 1997). IMA VolMath Appl , Vol 120. New York: Springer, 2000, 181-208
doi: 10.1007/978-1-4612-1176-1_8
21 Hofmann S, Mitrea M, Taylor M. Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J Geom Anal , 2007, 17: 593-647
doi: 10.1007/BF02937431
22 Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach Science Publishers, 1963
23 McLean W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press, 2000
24 Něcas J. Les m′ethodes directes en th′eorie des ′equations elliptiques. Paris: Masson et Cie, ′Editeurs, 1967
25 Pasciak J E, Zhao J. Overlapping Schwarz methods in H(curl) on polyhedral domains. J Numer Math , 2002, 10: 221-234
doi: 10.1515/JNMA.2002.221
26 Sch¨oberl J. Commuting quasi-interpolation operators for mixed finite elements. Tech Rep. ISC-01-10-MATH, Institute for Scientific Computation, Texas A&M University, College Station , 2001
27 Sch?berl J. A multilevel decomposition result in H(curl). In: Wesseling P, Oosterlee C, Hemker P, eds. Proceedings of the 8th European Multigrid Conference, EMG 2005, TU Delft . 2008
28 Sch?berl J. A posteriori error estimates for Maxwell equations. Math Comp , 2008, 77: 633-649
29 Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél Math Anal Numér , 1985, 19: 111-143
30 Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series , No 30. Princeton: Princeton University Press, 1970
31 Vassilevski P S, Wang J P. Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer Math , 1992, 63: 503-520
doi: 10.1007/BF01385872
[1] Yunqing HUANG, Shangyou ZHANG. A lowest order divergence-free finite element on rectangular grids[J]. Front Math Chin, 2011, 6(2): 253-270.
[2] TAO Xiangxing. Noncontinuous data boundary value problems for Schr╫dinger equation in Lipschitz domains[J]. Front. Math. China, 2006, 1(4): 589-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed