Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (2) : 273-303    https://doi.org/10.1007/s11464-012-0190-9
RESEARCH ARTICLE
General techniques for constructing variational integrators
Melvin LEOK(), Tatiana SHINGEL
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA
 Download: PDF(425 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.

Keywords Geometric numerical integration      geometric mechanics      symplectic integrator      variational integrator      Lagrangian mechanics     
Corresponding Author(s): LEOK Melvin,Email:mleok@math.ucsd.edu   
Issue Date: 01 April 2012
 Cite this article:   
Melvin LEOK,Tatiana SHINGEL. General techniques for constructing variational integrators[J]. Front Math Chin, 2012, 7(2): 273-303.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0190-9
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I2/273
1 Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys , 1994, 74: 1117-1143
doi: 10.1007/BF02188219
2 Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal , 2009, 29(2): 421-443
doi: 10.1093/imanum/drn018
3 Cortés J, Mart′?nez S. Non-holonomic integrators. Nonlinearity , 2001, 14(5): 1365-1392
doi: 10.1088/0951-7715/14/5/322
4 Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys , 2009, 59(7): 976-997
doi: 10.1016/j.geomphys.2009.04.005
5 Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems , 2003, 2(3): 381-416
doi: 10.1137/S1111111102406038
6 Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math , 1994, 1(1-4): 107-132
7 Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math , 1997, 76: 441-462
doi: 10.1007/s002110050271
8 Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006
9 Iserles A, Munthe-Kaas H, N?rsett S, Zanna A. Lie-group methods. In: Acta Numerica , Vol 9. Cambridge: Cambridge University Press, 2000, 215-365
10 Kahan W. Further remarks on reducing truncation errors. Commun ACM , 1965, 8: 40
doi: 10.1145/363707.363723
11 Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992
12 Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A , 2006, 39(19): 5509-5519
doi: 10.1088/0305-4470/39/19/S11
13 Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg , 2007, 196(29-30): 2907-2924
doi: 10.1016/j.cma.2007.01.017
14 Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom , 2007, 98(2): 121-144
doi: 10.1007/s10569-007-9073-x
15 Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng , 2009, 79(9): 1147-1174
doi: 10.1002/nme.2603
16 Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint , 2004, arXiv: math.NA/0508360
17 Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]
18 18. Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal , 2011, 31(4): 1497-1532
doi: 10.1093/imanum/drq027
19 Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal , 2003, 167(2): 85-146
doi: 10.1007/s00205-002-0212-y
20 Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech , 2008, 88: 677-708
doi: 10.1002/zamm.200700173
21 Marsden J, Pekarsky S, Shkoller S. Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity , 1999, 12(6): 1647-1662
doi: 10.1088/0951-7715/12/6/314
22 Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer , 2001, 10: 357-514
doi: 10.1017/S096249290100006X
23 Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math , 2004, 97: 493-535
doi: 10.1007/s00211-003-0488-3
24 Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control , Vol 4. 2009, 341-349
25 Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal , 1999, 36: 1549-1570
doi: 10.1137/S0036142997329797
26 Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul , 2009, 7(4): 1779-1794
doi: 10.1137/080732936
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed