Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (2) : 347-363    https://doi.org/10.1007/s11464-012-0191-8
RESEARCH ARTICLE
A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations
Paul TSUJI1, Lexing YING1,2()
1. ICES, University of Texas at Austin, Austin, TX 78712, USA; 2. Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
 Download: PDF(470 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.

Keywords Electromagnetic scattering      Yee grid      finite difference methods      perfectly matched layers      LDLT factorizations      multifrontal method      wave propagation in inhomogeneous and anisotropic media      matrix preconditioners     
Corresponding Author(s): YING Lexing,Email:lexing@math.utexas.edu   
Issue Date: 01 April 2012
 Cite this article:   
Paul TSUJI,Lexing YING. A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations[J]. Front Math Chin, 2012, 7(2): 347-363.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0191-8
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I2/347
1 Champagne N J, Berryman J G, Buettner H M. FDFD: A 3D Finite-difference frequency-domain code for electromagnetic induction tomography. J Comput Phys , 2001, 170(2): 830-848
doi: 10.1006/jcph.2001.6765
2 Chew W C, Jin J, Michielssen E, Song J. Fast and Efficient Algorithms in Computational Electromagnetics. London: Artech House, 2001
3 Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Opt Tech Lett , 1994, 7(13): 599-604
doi: 10.1002/mop.4650071304
4 Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves. Math Comp , 1977, 31: 629-651
doi: 10.1090/S0025-5718-1977-0436612-4
5 Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm Pure Appl Math , 2011, 64: 697-735
doi: 10.1002/cpa.20358
6 Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model Simul , 2011, 9: 686-710
doi: 10.1137/100804644
7 Jin J. The Finite Element Method in Electromagnetics. Hoboken: Wiley-IEEE Press, 2002
8 Lin L, Lu J, Ying L, Car R, E W. Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun Math Sci (to appear)
9 Mur G. Absorbing boundary conditions for the finite-difference approximation of timedomain electromagnetic field equations. IEEE Trans Electromag Compat , 1981, 23: 377-382
doi: 10.1109/TEMC.1981.303970
10 Taflove A, Hagness S. Computational Electrodynamics: the Finite-difference Timedomain Method. London: Artech House, 2005
11 Werner G R, Cary J R. A stable FDTD algorithm for non-diagonal, anisotropic dielectrics. J Comput Phys , 2007, 226(1): 1085-1101
doi: 10.1016/j.jcp.2007.05.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed