Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (2) : 365-384    https://doi.org/10.1007/s11464-012-0194-5
RESEARCH ARTICLE
An alternating direction algorithm for matrix completion with nonnegative factors
Yangyang XU1, Wotao YIN1(), Zaiwen WEN2, Yin ZHANG1
1. Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA; 2. Department of Mathematics and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(538 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classical alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity.

Keywords nonnegative matrix factorization      matrix completion      alternating direction method      hyperspectral unmixing     
Corresponding Author(s): YIN Wotao,Email:wotao.yin@rice.edu   
Issue Date: 01 April 2012
 Cite this article:   
Yangyang XU,Wotao YIN,Zaiwen WEN, et al. An alternating direction algorithm for matrix completion with nonnegative factors[J]. Front Math Chin, 2012, 7(2): 365-384.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0194-5
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I2/365
1 Berry M W, Browne M, Langville A N, Pauca V P, Plemmons R J. Algorithms and applications for approximate nonnegative matrix factorization. Comput Statist Data Anal , 2007, 52(1): 155-173
doi: 10.1016/j.csda.2006.11.006
2 Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods. Upper Saddle River: Prentice-Hall, Inc, 1989
3 Biswas P, Lian T C, Wang T C, Ye Y. Semidefinite programming based algorithms for sensor network localization. ACM Trans Sensor Networks , 2006, 2(2): 188-220
doi: 10.1145/1149283.1149286
4 Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion export. SIAM J Optim , 2010, 20: 1956-1982
doi: 10.1137/080738970
5 Cand`es E J, Li X, Ma Y, Wright J. Robust principal component analysis? J ACM, 2011, 58(3): 11
6 Cand`es E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math , 2009, 9(6): 717-772
doi: 10.1007/s10208-009-9045-5
7 Cand`es E J, Tao T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inform Theory , 2010, 56(5): 2053-2080
doi: 10.1109/TIT.2010.2044061
8 Cichocki A, Morup M, Smaragdis P, Wang W, Zdunek R. Advances in Nonnegative Matrix and Tensor Factorization. Computational Intelligence Neuroscience . New York: Hindawi Publishing Corporation, 2008
9 Cichocki A, Zdunek R, Phan A H, Amari S. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multiway Data Analysis and Blind Source Separation. Hoboken: John Wiley & Sons, Ltd, 2009
10 Fazel M. Matrix Rank Minimization with Applications. PhD Thesis, Stanford University . 2002
11 Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl , 1976, 2(1): 17-40
doi: 10.1016/0898-1221(76)90003-1
12 Glowinski R, Marrocco A. Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires. Rev Francaise dAut Inf Rech Oper , 1975, 41-76
13 Goldberg D, Nichols D, Oki B M, Terry D. Using collaborative filtering to weave an information tapestry. Commun ACM , 1992, 35(12): 61-70
doi: 10.1145/138859.138867
14 Goldfarb D, Ma S, Wen Z. Solving low-rank matrix completion problems efficiently. In: Proceedings of 47th Annual Allerton Conference on Communication, Control, and Computing, Monticello, Illinois . 2009
doi: 10.1109/ALLERTON.2009.5394884
15 Grippo L, Sciandrone M. On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper Res Lett , 2000, 26(3): 127-136
doi: 10.1016/S0167-6377(99)00074-7
16 Hale E T, YinW, Zhang Y. Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J Optim , 2008, 19(3): 1107-1130
doi: 10.1137/070698920
17 Hestenes M R. Multiplier and gradient methods. J Optim Theory Appl , 1969, 4(5): 303-320
doi: 10.1007/BF00927673
18 Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature , 1999, 401(6755): 788-791
doi: 10.1038/44565
19 Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst , 2001, 13: 556-562
20 Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system identification. SIAM J Matrix Anal Appl , 2009, 31(3): 1235-1256
doi: 10.1137/090755436
21 Ma S, Goldfarb D, Chen L. Fixed point and Bregman iterative methods for matrix rank minimization. Math Program, Ser A , 2011, 128(1-2): 321-353
22 Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics Intell Lab Syst , 1997, 37(1): 23-35
doi: 10.1016/S0169-7439(96)00044-5
23 Paatero P. The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J Comput Graph Statist , 1999, 8(4): 854-888
doi: 10.2307/1390831
24 Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics , 1994, 5(2): 111-126
doi: 10.1002/env.3170050203
25 Powell M J D. A method for nonlinear constraints in minimization problems. In: Fletcher R, ed. Optimization . New York: Academic Press, 1969, 283-298
26 Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review , 2010, 52(3): 471-501
doi: 10.1137/070697835
27 Rockafellar R T. The multiplier method of Hestenes and Powell applied to convex programming. J Optim Theory Appl , 1973, 12(6): 555-562
doi: 10.1007/BF00934777
28 Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci , 2008, 1(3): 248-272
doi: 10.1137/080724265
29 Wen Z, Goldfarb D, Yin W. Alternating direction augmented Lagrangian methods for semidefinite programming. Math Program Comput , 2010, 2(3-4): 203-230
doi: 10.1007/s12532-010-0017-1
30 Wen Z, Yin W, Zhang Y. Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm. Rice Univ CAAM Technical Report TR 10-07 , 2010
31 Yang J, Yuan X. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comp (to appear)
32 Yang J, Zhang Y, Yin W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput , 2008, 31: 2842-2865
doi: 10.1137/080732894
33 Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J Imaging Sci , 2008, 1(1): 143-168
doi: 10.1137/070703983
34 Zhang Y. An alternating direction algorithm for nonnegative matrix factorization. Rice Technical Report TR 10-03 , 2010
[1] Ke GUO, Deren HAN, David Z. W. WANG, Tingting WU. Convergence of ADMM for multi-block nonconvex separable optimization models[J]. Front. Math. China, 2017, 12(5): 1139-1162.
[2] Xingju CAI, Yannan CHEN, Deren HAN. Nonnegative tensor factorizations using an alternating direction method[J]. Front Math Chin, 2013, 8(1): 3-18.
[3] Bingsheng HE, Zheng PENG, Xiangfeng WANG. Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization[J]. Front Math Chin, 2011, 6(1): 79-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed