|
|
|
Diffusion bound and reducibility for discrete Schr?dinger equations with tangent potential |
Shiwen ZHANG( ), Zhiyan ZHAO |
| Department of Mathematics, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract In this paper, we consider the lattice Schr¨odinger equations iq ˙n(t)=tan?π(nα+x)qn(t)+?(qn+1(t)+qn-1(t))+δυn(t)|qn(t)|2τ-2qn(t), with α satisfying a certain Diophantine condition, x∈?/?, and τ = 1 or 2, where υn(t) is a spatial localized real bounded potential satisfying |υn(t)|≤Ce-ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}n∈? is at most logarithmic if the initial data {qn(0)}n∈?∈H1 for ? sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., iq ˙n(t)=tan?π(nα+x)qn(t)+?(qn+1(t)+qn-1(t))+δυn(θ0+tw)qn(t). Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ? and δ are sufficiently small.
|
| Keywords
Tangent potential
reducibility
Sobolev norm
Birkhoff normal form
|
|
Corresponding Author(s):
ZHANG Shiwen,Email:zhangshiwennju@163.com
|
|
Issue Date: 01 December 2012
|
|
| 1 |
Bellissard J, Lima R, Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys , 1983, 88: 465-477 doi: 10.1007/BF01211954
|
| 2 |
Bourgain J. Growth of Sobolev norms in linear Schr¨odinger equation with quasi-periodic potential. Comm Math Phys , 1999, 204: 207-247 doi: 10.1007/s002200050644
|
| 3 |
Bourgain J. On growth of Sobolev norms in linear Schr¨odinger equation with time dependent potential. J Anal Math , 1999, 77: 315-348 doi: 10.1007/BF02791265
|
| 4 |
Bourgain J, Wang Weimin. Anderson localization for time quasi-periodic random Schr?dinger and wave equations. Comm Math Phys , 2004, 3: 429-466
|
| 5 |
Bourgain J, Wang Weimin. Diffusion bound for a nonlinear Schr¨odinger equation. In: Mathematical Aspect of Nonlinear Dispersive Equations. Ann of Math Stud , Vol 163. Princeton: Princeton University Press , 2007, 21-42
|
| 6 |
Devillard P, Souillard B J. Polynomially decaying transmission for the nonlinear Schr?dinger equation in a random medium. J Stat Phys , 1986, 43: 423-439 doi: 10.1007/BF01020646
|
| 7 |
Eliasson L H, Kuksin S B. On reducibility of Schr?dinger equations with quasi-periodic in time potentials. Comm Math Phys , 2009, 286: 125-135 doi: 10.1007/s00220-008-0683-2
|
| 8 |
Fr?hlich J, Spencer T, Wayne C E. Localization in disordered, nonlinear dynamical systems. J Stat Phys , 1986, 42: 247-274 doi: 10.1007/BF01127712
|
| 9 |
Geng Jiansheng, Viveros J, Yi Yingfei. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D , 2008, 237: 2866-2892 doi: 10.1016/j.physd.2008.05.010
|
| 10 |
Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schr¨odinger equations with tangent potential. Preprint
|
| 11 |
Howland J S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann , 1974, 207: 315-335 doi: 10.1007/BF01351346
|
| 12 |
Jitomirskaya S. Ergodic Schr?dinger operators (on one foot).Proc Sympos Pure Math , 2007, 76: 613-648
|
| 13 |
Nersesyan V. Growth of Sobolev norms and controllability of Schr¨odinger equation. Comm Math Phys , 2009, 290(1): 371-387 doi: 10.1007/s00220-009-0842-0
|
| 14 |
Soffer A, Wang Weimin. Anderson localization for time periodic random Schr¨odinger operators. Comm Partial Differential Equations , 2003, 28: 333-347 doi: 10.1081/PDE-120019385
|
| 15 |
Wang Weimin. Logarithmic bounds on Sobolev norms for time dependent linear Schr?dinger equations. Comm Partial Differential Equations , 2008, 33: 2164-2179 doi: 10.1080/03605300802537115
|
| 16 |
Wang Weimin. Bounded Sobolev norms for linear Schr?dinger equations under resonant perturbations. J Funct Anal , 2008, 254: 2926-2946 doi: 10.1016/j.jfa.2007.11.012
|
| 17 |
Wang Weimin, Zhang Zhifei. Long time Anderson localization for the nonlinear random Schr¨odinger equation. J Stat Phys , 2008, 134(5-6): 953-968
|
| 18 |
Yajima K, Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincar´e (A) , 1983, 39(2): 145-157
|
| 19 |
You Jiangong. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations , 1999, 152: 1-29 doi: 10.1006/jdeq.1998.3515
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|