Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (6) : 1213-1235    https://doi.org/10.1007/s11464-012-0241-2
RESEARCH ARTICLE
Diffusion bound and reducibility for discrete Schr?dinger equations with tangent potential
Shiwen ZHANG(), Zhiyan ZHAO
Department of Mathematics, Nanjing University, Nanjing 210093, China
 Download: PDF(203 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we consider the lattice Schr¨odinger equations iq ˙n(t)=tan?π(nα+x)qn(t)+?(qn+1(t)+qn-1(t))+δυn(t)|qn(t)|2τ-2qn(t), with α satisfying a certain Diophantine condition, x?/?, and τ = 1 or 2, where υn(t) is a spatial localized real bounded potential satisfying |υn(t)|Ce-ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}n? is at most logarithmic if the initial data {qn(0)}n?H1 for ? sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., iq ˙n(t)=tan?π(nα+x)qn(t)+?(qn+1(t)+qn-1(t))+δυn(θ0+tw)qn(t). Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ? and δ are sufficiently small.

Keywords Tangent potential      reducibility      Sobolev norm      Birkhoff normal form     
Corresponding Author(s): ZHANG Shiwen,Email:zhangshiwennju@163.com   
Issue Date: 01 December 2012
 Cite this article:   
Zhiyan ZHAO,Shiwen ZHANG. Diffusion bound and reducibility for discrete Schr?dinger equations with tangent potential[J]. Front Math Chin, 2012, 7(6): 1213-1235.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0241-2
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I6/1213
1 Bellissard J, Lima R, Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys , 1983, 88: 465-477
doi: 10.1007/BF01211954
2 Bourgain J. Growth of Sobolev norms in linear Schr¨odinger equation with quasi-periodic potential. Comm Math Phys , 1999, 204: 207-247
doi: 10.1007/s002200050644
3 Bourgain J. On growth of Sobolev norms in linear Schr¨odinger equation with time dependent potential. J Anal Math , 1999, 77: 315-348
doi: 10.1007/BF02791265
4 Bourgain J, Wang Weimin. Anderson localization for time quasi-periodic random Schr?dinger and wave equations. Comm Math Phys , 2004, 3: 429-466
5 Bourgain J, Wang Weimin. Diffusion bound for a nonlinear Schr¨odinger equation. In: Mathematical Aspect of Nonlinear Dispersive Equations. Ann of Math Stud , Vol 163. Princeton: Princeton University Press , 2007, 21-42
6 Devillard P, Souillard B J. Polynomially decaying transmission for the nonlinear Schr?dinger equation in a random medium. J Stat Phys , 1986, 43: 423-439
doi: 10.1007/BF01020646
7 Eliasson L H, Kuksin S B. On reducibility of Schr?dinger equations with quasi-periodic in time potentials. Comm Math Phys , 2009, 286: 125-135
doi: 10.1007/s00220-008-0683-2
8 Fr?hlich J, Spencer T, Wayne C E. Localization in disordered, nonlinear dynamical systems. J Stat Phys , 1986, 42: 247-274
doi: 10.1007/BF01127712
9 Geng Jiansheng, Viveros J, Yi Yingfei. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D , 2008, 237: 2866-2892
doi: 10.1016/j.physd.2008.05.010
10 Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schr¨odinger equations with tangent potential. Preprint
11 Howland J S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann , 1974, 207: 315-335
doi: 10.1007/BF01351346
12 Jitomirskaya S. Ergodic Schr?dinger operators (on one foot).Proc Sympos Pure Math , 2007, 76: 613-648
13 Nersesyan V. Growth of Sobolev norms and controllability of Schr¨odinger equation. Comm Math Phys , 2009, 290(1): 371-387
doi: 10.1007/s00220-009-0842-0
14 Soffer A, Wang Weimin. Anderson localization for time periodic random Schr¨odinger operators. Comm Partial Differential Equations , 2003, 28: 333-347
doi: 10.1081/PDE-120019385
15 Wang Weimin. Logarithmic bounds on Sobolev norms for time dependent linear Schr?dinger equations. Comm Partial Differential Equations , 2008, 33: 2164-2179
doi: 10.1080/03605300802537115
16 Wang Weimin. Bounded Sobolev norms for linear Schr?dinger equations under resonant perturbations. J Funct Anal , 2008, 254: 2926-2946
doi: 10.1016/j.jfa.2007.11.012
17 Wang Weimin, Zhang Zhifei. Long time Anderson localization for the nonlinear random Schr¨odinger equation. J Stat Phys , 2008, 134(5-6): 953-968
18 Yajima K, Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincar´e (A) , 1983, 39(2): 145-157
19 You Jiangong. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations , 1999, 152: 1-29
doi: 10.1006/jdeq.1998.3515
[1] Xindong XU. Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential[J]. Front. Math. China, 2018, 13(1): 227-254.
[2] Yiju WANG,Kaili ZHANG,Hongchun SUN. Criteria for strong H-tensors[J]. Front. Math. China, 2016, 11(3): 577-592.
[3] Naihuan JING,Chunhua WANG. Modules for double affine Lie algebras[J]. Front. Math. China, 2016, 11(1): 89-108.
[4] Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors[J]. Front Math Chin, 2013, 8(1): 63-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed