|
|
Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems |
Yuelong TANG1, Yanping CHEN2( ) |
1. Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, China; 2. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.
|
Keywords
Superconvergence property
quadratic optimal control problem
fully discrete finite element approximation
semilinear parabolic equation
interpolate operator
|
Corresponding Author(s):
CHEN Yanping,Email:yanpingchen@scnu.edu.cn
|
Issue Date: 01 April 2013
|
|
1 |
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley Interscience, 2000 doi: 10.1002/9781118032824
|
2 |
Arada N, Casas E, Tr?ltzsch F. Error estimates for semilinear elliptic control problem. Comput Optim Appl , 2002, 23: 201-229 doi: 10.1023/A:1020576801966
|
3 |
Babuˇska I, Strouboulis T, Upadhyay C S, Gangaraj S K. A posteriori estimation and daptive control of the pollution error in the h-version of the finite element method. Int J Numer Methods Eng , 1995, 38(24): 4207-4235 doi: 10.1002/nme.1620382408
|
4 |
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial defferential equations: basic concept. SIAM J Control Optim , 2000, 39(1): 113-132 doi: 10.1137/S0363012999351097
|
5 |
Becker R, Meidner D, Vexler B. Efficient numerical solution of parabolic optimization problems by finite element methods. Optim Methods Softw , 2007, 22(5): 813-833 doi: 10.1080/10556780701228532
|
6 |
Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math , 1994, 68: 311-324 doi: 10.1007/s002110050064
|
7 |
Casas E, Tr?ltzsch F. Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J Optim , 2002, 13(2): 406-431 doi: 10.1137/S1052623400367698
|
8 |
Casas E, Tr?ltzsch F, Unger A. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J Control Optim , 2000, 38(5): 1369-1391 doi: 10.1137/S0363012997324910
|
9 |
Chen C, Huang Y. High Accuracy Theory of Finite Element Methods. Hunan: Hunan Science and Technology Press, 1995 (in Chinese)
|
10 |
Chen Y. Superconvergence of mixed finite element methods for optimal control problems. Math Comp , 2008, 77: 1269-1291 doi: 10.1090/S0025-5718-08-02104-2
|
11 |
Chen Y. Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int J Numer Methods Eng , 2008, 75(8): 881-898 doi: 10.1002/nme.2272
|
12 |
Chen Y, Dai L, Lu Z. Superconvergence of rectangular mixed finite element methods for constrained optimal control problem. Adv Appl Math Mech , 2010, 2: 56-75
|
13 |
Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations. J Sci Comput , 2009, 39: 206-221 doi: 10.1007/s10915-008-9258-9
|
14 |
Chen Y, Huang Y, Liu W, Yan N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J Sci Comput , 2010, 42: 382-403 doi: 10.1007/s10915-009-9327-8
|
15 |
Chen Y, Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int J Numer Anal Model , 2006, 3: 311-321
|
16 |
Chen Y, Lu Z, Guo R. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems. Front Math China , 2012, 7(3): 397-413 doi: 10.1007/s11464-012-0179-4
|
17 |
Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
|
18 |
Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp , 2008, 77: 1253-1268 doi: 10.1090/S0025-5718-08-02051-6
|
19 |
Knowles G. Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim , 1982, 20(3): 414-427 doi: 10.1137/0320032
|
20 |
Kufner A, John O, Fuck S. Function Spaces. Leyden: Nordhoff, 1997
|
21 |
Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput , 2007, 33: 155-182 doi: 10.1007/s10915-007-9147-7
|
22 |
Lin Q, Zhu Q. The Preprocessing and Postprocessing for the Finite Element Method. Shanghai: Shanghai Scientific and Technical Publishers, 1994 (in Chinese)
|
23 |
Lions J. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag , 1971 doi: 10.1007/978-3-642-65024-6
|
24 |
Lions J, Magenes E. Non Homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972
|
25 |
Liu H, Yan N. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations. J Comput Appl Math , 2007, 209: 187-207 doi: 10.1016/j.cam.2006.10.083
|
26 |
Liu W, Yan N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math , 2003, 93: 497-521 doi: 10.1007/s002110100380
|
27 |
Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math , 2003, 47: 173-187 doi: 10.1016/S0168-9274(03)00054-0
|
28 |
Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
|
29 |
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim , 2007, 46(1): 116-142 doi: 10.1137/060648994
|
30 |
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J Control Optim , 2008, 47(3): 1150-1177 doi: 10.1137/070694016
|
31 |
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J Control Optim , 2008, 47(3): 1301-1329 doi: 10.1137/070694028
|
32 |
Meyer C, R?sch A. Superconvergence properties of optimal control problems. SIAM J Control Optim , 2004, 43(3): 970-985 doi: 10.1137/S0363012903431608
|
33 |
Neittaanmaki P, Tiba D. Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. New York: Dekker, 1994
|
34 |
Pao C. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992
|
35 |
Thomée V. Galekin Finite Element Methods for Parabolic Problems. Berlin: Springer-Verlag, 1997 doi: 10.1007/978-3-662-03359-3
|
36 |
Tiba D. Lectures on The Optimal Control of Elliptic Equations. Finland: University of Jyvaskyla Press, 1995
|
37 |
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math , 2011, 61: 181-200 doi: 10.1016/j.apnum.2010.09.004
|
38 |
Yan N, Zhou Z. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front Math China , 2008, 3(3): 415-442 doi: 10.1007/s11464-008-0029-6
|
39 |
Yang D, Chang Y, Liu W. A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J Comput Math , 2008, 26(4): 471-487
|
40 |
Zhou J, Chen Y, Dai Y. Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl Math Comput , 2010, 217: 2057-2066 doi: 10.1016/j.amc.2010.07.006
|
41 |
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery and a poseriori error estimates. Int J Numer Methods Eng , 1992, 33: 1331-1382 doi: 10.1002/nme.1620330702
|
42 |
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Math , 1992, 101: 207-224
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|