Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (2) : 443-464    https://doi.org/10.1007/s11464-013-0239-4
RESEARCH ARTICLE
Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems
Yuelong TANG1, Yanping CHEN2()
1. Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, China; 2. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
 Download: PDF(1214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.

Keywords Superconvergence property      quadratic optimal control problem      fully discrete finite element approximation      semilinear parabolic equation      interpolate operator     
Corresponding Author(s): CHEN Yanping,Email:yanpingchen@scnu.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Yuelong TANG,Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0239-4
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I2/443
1 Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley Interscience, 2000
doi: 10.1002/9781118032824
2 Arada N, Casas E, Tr?ltzsch F. Error estimates for semilinear elliptic control problem. Comput Optim Appl , 2002, 23: 201-229
doi: 10.1023/A:1020576801966
3 Babuˇska I, Strouboulis T, Upadhyay C S, Gangaraj S K. A posteriori estimation and daptive control of the pollution error in the h-version of the finite element method. Int J Numer Methods Eng , 1995, 38(24): 4207-4235
doi: 10.1002/nme.1620382408
4 Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial defferential equations: basic concept. SIAM J Control Optim , 2000, 39(1): 113-132
doi: 10.1137/S0363012999351097
5 Becker R, Meidner D, Vexler B. Efficient numerical solution of parabolic optimization problems by finite element methods. Optim Methods Softw , 2007, 22(5): 813-833
doi: 10.1080/10556780701228532
6 Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math , 1994, 68: 311-324
doi: 10.1007/s002110050064
7 Casas E, Tr?ltzsch F. Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J Optim , 2002, 13(2): 406-431
doi: 10.1137/S1052623400367698
8 Casas E, Tr?ltzsch F, Unger A. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J Control Optim , 2000, 38(5): 1369-1391
doi: 10.1137/S0363012997324910
9 Chen C, Huang Y. High Accuracy Theory of Finite Element Methods. Hunan: Hunan Science and Technology Press, 1995 (in Chinese)
10 Chen Y. Superconvergence of mixed finite element methods for optimal control problems. Math Comp , 2008, 77: 1269-1291
doi: 10.1090/S0025-5718-08-02104-2
11 Chen Y. Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int J Numer Methods Eng , 2008, 75(8): 881-898
doi: 10.1002/nme.2272
12 Chen Y, Dai L, Lu Z. Superconvergence of rectangular mixed finite element methods for constrained optimal control problem. Adv Appl Math Mech , 2010, 2: 56-75
13 Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations. J Sci Comput , 2009, 39: 206-221
doi: 10.1007/s10915-008-9258-9
14 Chen Y, Huang Y, Liu W, Yan N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J Sci Comput , 2010, 42: 382-403
doi: 10.1007/s10915-009-9327-8
15 Chen Y, Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int J Numer Anal Model , 2006, 3: 311-321
16 Chen Y, Lu Z, Guo R. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems. Front Math China , 2012, 7(3): 397-413
doi: 10.1007/s11464-012-0179-4
17 Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
18 Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp , 2008, 77: 1253-1268
doi: 10.1090/S0025-5718-08-02051-6
19 Knowles G. Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim , 1982, 20(3): 414-427
doi: 10.1137/0320032
20 Kufner A, John O, Fuck S. Function Spaces. Leyden: Nordhoff, 1997
21 Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput , 2007, 33: 155-182
doi: 10.1007/s10915-007-9147-7
22 Lin Q, Zhu Q. The Preprocessing and Postprocessing for the Finite Element Method. Shanghai: Shanghai Scientific and Technical Publishers, 1994 (in Chinese)
23 Lions J. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag , 1971
doi: 10.1007/978-3-642-65024-6
24 Lions J, Magenes E. Non Homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972
25 Liu H, Yan N. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations. J Comput Appl Math , 2007, 209: 187-207
doi: 10.1016/j.cam.2006.10.083
26 Liu W, Yan N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math , 2003, 93: 497-521
doi: 10.1007/s002110100380
27 Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math , 2003, 47: 173-187
doi: 10.1016/S0168-9274(03)00054-0
28 Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
29 Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim , 2007, 46(1): 116-142
doi: 10.1137/060648994
30 Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J Control Optim , 2008, 47(3): 1150-1177
doi: 10.1137/070694016
31 Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J Control Optim , 2008, 47(3): 1301-1329
doi: 10.1137/070694028
32 Meyer C, R?sch A. Superconvergence properties of optimal control problems. SIAM J Control Optim , 2004, 43(3): 970-985
doi: 10.1137/S0363012903431608
33 Neittaanmaki P, Tiba D. Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. New York: Dekker, 1994
34 Pao C. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992
35 Thomée V. Galekin Finite Element Methods for Parabolic Problems. Berlin: Springer-Verlag, 1997
doi: 10.1007/978-3-662-03359-3
36 Tiba D. Lectures on The Optimal Control of Elliptic Equations. Finland: University of Jyvaskyla Press, 1995
37 Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math , 2011, 61: 181-200
doi: 10.1016/j.apnum.2010.09.004
38 Yan N, Zhou Z. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front Math China , 2008, 3(3): 415-442
doi: 10.1007/s11464-008-0029-6
39 Yang D, Chang Y, Liu W. A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J Comput Math , 2008, 26(4): 471-487
40 Zhou J, Chen Y, Dai Y. Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl Math Comput , 2010, 217: 2057-2066
doi: 10.1016/j.amc.2010.07.006
41 Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery and a poseriori error estimates. Int J Numer Methods Eng , 1992, 33: 1331-1382
doi: 10.1002/nme.1620330702
42 Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Math , 1992, 101: 207-224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed