Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (4) : 933-960    https://doi.org/10.1007/s11464-013-0271-4
RESEARCH ARTICLE
Generalized Jacobi-Gauss-Lobatto interpolation
Zhengsu WAN1,2, Benyu GUO3, Chengjian ZHANG1()
1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China; 3. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.

Keywords Generalized Jacobi-Gauss-Lobatto interpolation      pseudospectral method      non-uniformly weighted Sobolev space     
Corresponding Author(s): ZHANG Chengjian,Email:zs77w@126.com   
Issue Date: 01 August 2013
 Cite this article:   
Zhengsu WAN,Benyu GUO,Chengjian ZHANG. Generalized Jacobi-Gauss-Lobatto interpolation[J]. Front Math Chin, 2013, 8(4): 933-960.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0271-4
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I4/933
1 Askey R. Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics , Vol 21. Philadelphia: SIAM, 1975
doi: 10.1137/1.9781611970470
2 Babu?ka I, Guo B Q. Direct and inverse approximation theorems for the p-version of finite element method in the framework of weighted Besov spaces. Part I: Approximability of functions in the weighted Besov space . SIAM J Numer Anal, 2001, 39: 1512-1538
doi: 10.1137/S0036142901356551
3 Belhachmi Z, Bernardi C, Karageorghis A. Spectral element discretization of the circular driven cavity. Part II: The bilaplacian equation . SIAM J Numer Anal, 2001, 38: 1926-1960
doi: 10.1137/S0036142999359670
4 Bergh J, L?fstr?m J. Interpolation Spaces, An Introduction. Berlin: Spinger-Verlag, 1976
doi: 10.1007/978-3-642-66451-9
5 Bernardi C, Dauge M, Maday Y. Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics , Vol 3. Paris: Gauhtier-Villars & North-Holland, 1999
6 Bernardi C, Maday Y. Spectral methods. In: Ciarlet P G, Lions P L, eds. Handbook of Numerical Analysis , Vol 5, Techniques of Scientific Computing . Amsterdam: Elsevier, 1997, 209-486
7 Bernardi C, Maday Y. Some spectral approximations of one-dimensional fourth-order problems. In: Nevai P, Pinkus A, eds. Progress in Approximation Theory . San Diego: Academic Press, 1991, 43-116
8 Bernardi C, Maday Y. Polynomial interpolation results in Sobolev spaces. J Comput Appl Math , 1992, 43: 53-80
doi: 10.1016/0377-0427(92)90259-Z
9 Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J Sci Comput , 2000, 22: 1549-1569
doi: 10.1137/S1064827598342407
10 Bj?rstad P E, Tj?stheim B P. Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J Sci Comput , 1997, 18: 621-632
doi: 10.1137/S1064827596298233
11 Boyd J P. Chebyshev and Fourier Spectral Methods. 2nd ed. Mineola: Dover, 2001
12 Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics. Berlin: Springer-Verlag, 1998
13 Dubiner M. Spectral methods on triangles and other domains. J Sci Comput , 1991, 6: 345-390
doi: 10.1007/BF01060030
14 Ezzirani A, Guessab A. A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations. Math Comp , 1999, 225: 217-248
doi: 10.1090/S0025-5718-99-01001-7
15 Gottlieb D, Orszag S A. Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM, 1977
doi: 10.1137/1.9781611970425
16 Guo B Y. Spectral Methods and Their Applications. Singapore: World Scientific, 1998
doi: 10.1142/9789812816641
17 Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line. J Math Anal Appl , 1998, 226: 180-206
doi: 10.1006/jmaa.1998.6025
18 Guo B Y. Jacobi spectral approximation and its applications to differential equations on the half line. J Comput Math , 2000, 18: 95-112
19 Guo B Y. Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations on the whole line. SIAM J Numer Anal , 2000, 37: 621-645
20 Guo B Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J Math Anal Appl , 2000, 243: 373-408
doi: 10.1006/jmaa.1999.6677
21 Guo B Y, Shen J, Wang Z Q. A rational approximation and its applications to differential equations on the half line. J Sci Comput , 2000, 15: 117-148
doi: 10.1023/A:1007698525506
22 Guo B Y, Shen J, Wang Z Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int J Numer Meth Engrg , 2002, 53: 65-84
doi: 10.1002/nme.392
23 Guo B Y, Wang L L. Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput Math , 2000, 14: 227-276
24 Guo B Y, Wang L L. Error analysis of spectral method on a triangle. Adv Comput Math , 2007, 26: 473-496
doi: 10.1007/s10444-005-7471-8
25 Guo B Y, Wang L L. Jacobi approximations and Jacobi-Gauss-type interpolations in non-uniformly Jacobi-weighted Sobolev spaces. J Approx Theory , 2004, 28: 1-41
doi: 10.1016/j.jat.2004.03.008
26 Guo B Y, Wang Z Q, Wan Z S, Chu D L. Second order Jacobi approximation with applications to fourth-order differential equations. Appl Numer Math , 2005, 55: 480-502
doi: 10.1016/j.apnum.2005.01.002
27 Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952
28 Junghanns V P. Uniform convergence of approximate methods for Cauchy type singular equation over (-1, 1). Wissenschaftliche Zeitschrift Technische Hocschule , Karl-Mars Stadt, 1984, 26: 250-256
29 Karniadakis G, Sherwin S. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford: Oxford University Press, 1999
30 Owens R G. Spectral approximation on the triangle. Proc R Soc Lond Ser A , 1998, 454: 857-872
31 Shen J. Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J Sci Comput , 1994, 15: 1489-1505
doi: 10.1137/0915089
32 Sherwin S J, Farniadakis G E. A new triangular and tetrahedral basis for high-order finite element methods. Int J Numer Methods Engrg , 1995, 38: 3775-3802
doi: 10.1002/nme.1620382204
33 Stephan E P, Suri M. On the convergence of the p-version of the boundary element Galerkin method. Math Comp , 1989, 52: 31-48
34 Szeg? G. Orthogonal Polynomials. Providence: Amer Math Soc, 1959
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed