|
|
|
Generalized Jacobi-Gauss-Lobatto interpolation |
Zhengsu WAN1,2, Benyu GUO3, Chengjian ZHANG1( ) |
| 1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China; 3. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China |
|
|
|
|
Abstract We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.
|
| Keywords
Generalized Jacobi-Gauss-Lobatto interpolation
pseudospectral method
non-uniformly weighted Sobolev space
|
|
Corresponding Author(s):
ZHANG Chengjian,Email:zs77w@126.com
|
|
Issue Date: 01 August 2013
|
|
| 1 |
Askey R. Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics , Vol 21. Philadelphia: SIAM, 1975 doi: 10.1137/1.9781611970470
|
| 2 |
Babu?ka I, Guo B Q. Direct and inverse approximation theorems for the p-version of finite element method in the framework of weighted Besov spaces. Part I: Approximability of functions in the weighted Besov space . SIAM J Numer Anal, 2001, 39: 1512-1538 doi: 10.1137/S0036142901356551
|
| 3 |
Belhachmi Z, Bernardi C, Karageorghis A. Spectral element discretization of the circular driven cavity. Part II: The bilaplacian equation . SIAM J Numer Anal, 2001, 38: 1926-1960 doi: 10.1137/S0036142999359670
|
| 4 |
Bergh J, L?fstr?m J. Interpolation Spaces, An Introduction. Berlin: Spinger-Verlag, 1976 doi: 10.1007/978-3-642-66451-9
|
| 5 |
Bernardi C, Dauge M, Maday Y. Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics , Vol 3. Paris: Gauhtier-Villars & North-Holland, 1999
|
| 6 |
Bernardi C, Maday Y. Spectral methods. In: Ciarlet P G, Lions P L, eds. Handbook of Numerical Analysis , Vol 5, Techniques of Scientific Computing . Amsterdam: Elsevier, 1997, 209-486
|
| 7 |
Bernardi C, Maday Y. Some spectral approximations of one-dimensional fourth-order problems. In: Nevai P, Pinkus A, eds. Progress in Approximation Theory . San Diego: Academic Press, 1991, 43-116
|
| 8 |
Bernardi C, Maday Y. Polynomial interpolation results in Sobolev spaces. J Comput Appl Math , 1992, 43: 53-80 doi: 10.1016/0377-0427(92)90259-Z
|
| 9 |
Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J Sci Comput , 2000, 22: 1549-1569 doi: 10.1137/S1064827598342407
|
| 10 |
Bj?rstad P E, Tj?stheim B P. Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J Sci Comput , 1997, 18: 621-632 doi: 10.1137/S1064827596298233
|
| 11 |
Boyd J P. Chebyshev and Fourier Spectral Methods. 2nd ed. Mineola: Dover, 2001
|
| 12 |
Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics. Berlin: Springer-Verlag, 1998
|
| 13 |
Dubiner M. Spectral methods on triangles and other domains. J Sci Comput , 1991, 6: 345-390 doi: 10.1007/BF01060030
|
| 14 |
Ezzirani A, Guessab A. A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations. Math Comp , 1999, 225: 217-248 doi: 10.1090/S0025-5718-99-01001-7
|
| 15 |
Gottlieb D, Orszag S A. Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM, 1977 doi: 10.1137/1.9781611970425
|
| 16 |
Guo B Y. Spectral Methods and Their Applications. Singapore: World Scientific, 1998 doi: 10.1142/9789812816641
|
| 17 |
Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line. J Math Anal Appl , 1998, 226: 180-206 doi: 10.1006/jmaa.1998.6025
|
| 18 |
Guo B Y. Jacobi spectral approximation and its applications to differential equations on the half line. J Comput Math , 2000, 18: 95-112
|
| 19 |
Guo B Y. Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations on the whole line. SIAM J Numer Anal , 2000, 37: 621-645
|
| 20 |
Guo B Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J Math Anal Appl , 2000, 243: 373-408 doi: 10.1006/jmaa.1999.6677
|
| 21 |
Guo B Y, Shen J, Wang Z Q. A rational approximation and its applications to differential equations on the half line. J Sci Comput , 2000, 15: 117-148 doi: 10.1023/A:1007698525506
|
| 22 |
Guo B Y, Shen J, Wang Z Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int J Numer Meth Engrg , 2002, 53: 65-84 doi: 10.1002/nme.392
|
| 23 |
Guo B Y, Wang L L. Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput Math , 2000, 14: 227-276
|
| 24 |
Guo B Y, Wang L L. Error analysis of spectral method on a triangle. Adv Comput Math , 2007, 26: 473-496 doi: 10.1007/s10444-005-7471-8
|
| 25 |
Guo B Y, Wang L L. Jacobi approximations and Jacobi-Gauss-type interpolations in non-uniformly Jacobi-weighted Sobolev spaces. J Approx Theory , 2004, 28: 1-41 doi: 10.1016/j.jat.2004.03.008
|
| 26 |
Guo B Y, Wang Z Q, Wan Z S, Chu D L. Second order Jacobi approximation with applications to fourth-order differential equations. Appl Numer Math , 2005, 55: 480-502 doi: 10.1016/j.apnum.2005.01.002
|
| 27 |
Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952
|
| 28 |
Junghanns V P. Uniform convergence of approximate methods for Cauchy type singular equation over (-1, 1). Wissenschaftliche Zeitschrift Technische Hocschule , Karl-Mars Stadt, 1984, 26: 250-256
|
| 29 |
Karniadakis G, Sherwin S. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford: Oxford University Press, 1999
|
| 30 |
Owens R G. Spectral approximation on the triangle. Proc R Soc Lond Ser A , 1998, 454: 857-872
|
| 31 |
Shen J. Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J Sci Comput , 1994, 15: 1489-1505 doi: 10.1137/0915089
|
| 32 |
Sherwin S J, Farniadakis G E. A new triangular and tetrahedral basis for high-order finite element methods. Int J Numer Methods Engrg , 1995, 38: 3775-3802 doi: 10.1002/nme.1620382204
|
| 33 |
Stephan E P, Suri M. On the convergence of the p-version of the boundary element Galerkin method. Math Comp , 1989, 52: 31-48
|
| 34 |
Szeg? G. Orthogonal Polynomials. Providence: Amer Math Soc, 1959
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|