I N I-group,minimal non-I N I-group," /> I N I-groups" /> I N I-groups" /> I N I-group,minimal non-I N I-group,"/> I N I-groups" /> I N I-group,minimal non-I N I-group,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (6) : 1295-1306    https://doi.org/10.1007/s11464-013-0299-5
RESEARCH ARTICLE
On minimal non-I N I-groups
Zhangjia HAN1,2, Guiyun CHEN1(), Huaguo SHI3
1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China; 2. School of Mathematics, Chengdu University of Information Technology, Chengdu 610225, China; 3. Sichuan Vocational and Technical College, Suining 629000, China
 Download: PDF(129 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A finite group G is called an I N I-group if every proper subgroup H of G is either subnormal in G or self-normalizing. We determinate the structure of non-I N I-groups in which all proper subgroups are I N I-groups.

Keywords Subnormal subgroup      self-normalizing subgroup      I N I-group')" href="#">I N I-group      I N I-group')" href="#">minimal non-I N I-group     
Corresponding Author(s): CHEN Guiyun,Email:gychen1963@163.com   
Issue Date: 01 December 2013
 Cite this article:   
Zhangjia HAN,Guiyun CHEN,Huaguo SHI. On minimal non-I N I-groups[J]. Front Math Chin, 2013, 8(6): 1295-1306.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0299-5
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I6/1295
1 Doerk K. Minimal nicht überaufl?sbare endliche Gruppen. Math Z , 1966, 91: 198-205
doi: 10.1007/BF01312426
2 Guo P, Guo X. On minimal non-MSN-groups. Front Math China , 2011, 6(5): 847-854
doi: 10.1007/s11464-011-0115-z
3 It? N. über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad , 1955, 31: 327-328
doi: 10.3792/pja/1195525683
4 King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics. Lecture Note Series 327 . Cambridge: Cambridge University Press, 2005, 29-56
5 Kurzweil H, Stellmacher B. The Theory of Finite Groups (An Introduction). New York: Springer, 2004
6 Laffey T J. A lemma on finite p-group and some consequences. Proc Cambr Phil Soc , 1974, 75: 133-137
doi: 10.1017/S0305004100048350
7 Liu X, Xiao G. Finite groups with only subnormal or self-normal subgroups. J Sichuan Normal Univ , 2000, 23(5): 479-481 (in Chinese)
8 Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Amer Math Soc , 1903, 4: 398-404
doi: 10.1090/S0002-9947-1903-1500650-9
9 Sastry N. On minimal non-PN-groups. J Algebra , 1980, 65: 104-109
doi: 10.1016/0021-8693(80)90241-0
10 Suzuki M. On a class of doubly transitive groups. Ann Math , 1962, 75(1): 105-145
doi: 10.2307/1970423
11 Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc , 1968, 74: 383-437
doi: 10.1090/S0002-9904-1968-11953-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed