Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (5) : 1099-1115    https://doi.org/10.1007/s11464-013-0309-7
RESEARCH ARTICLE
A semidiscrete Gardner equation
Haiqiong ZHAO1, Zuonong ZHU2()
1. Business Information Management School, Shanghai University of International Business and Economics, Shanghai 201620, China; 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct the Darboux transformations, exact solutions, and infinite number of conservation laws for a semidiscrete Gardner equation. A special class of solutions of the semidiscrete equation, called table-top solitons, are given. The dynamical properties of these solutions are also discussed.

Keywords Semidiscrete Gardner equation      Darboux transformation      exact solution     
Corresponding Author(s): ZHU Zuonong,Email:znzhu@sjtu.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Haiqiong ZHAO,Zuonong ZHU. A semidiscrete Gardner equation[J]. Front Math Chin, 2013, 8(5): 1099-1115.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0309-7
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I5/1099
1 Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math , 1974, 53: 249-315
2 Ablowitz M J, Ladik J. Nonlinear differential-difference equations. J Math Phys , 1975, 16: 598-603
doi: 10.1063/1.522558
3 Ablowitz M J, Ladik J. Nonlinear differential-difference equations and Fourier analysis. J Math Phys , 1976, 17: 1011-1018
doi: 10.1063/1.523009
4 Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM , 1981
doi: 10.1137/1.9781611970883
5 Chen Y Z, Liu P L F. On interfacial waves over random topography. Wave Motion , 1996, 24: 169-184
doi: 10.1016/0165-2125(96)00014-5
6 Geng X G. Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem. Acta Math Sci , 1989, 9: 21-26
7 Grimshaw R, Pelinovsky D, Pelinovsky E, Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation. Chaos , 2002, 12: 1070-1076
doi: 10.1063/1.1521391
8 Grimshaw R, Slunyaev A, Pelinovsky E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity. Chaos , 2010, 20: 013102
doi: 10.1063/1.3279480
9 Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett , 1971, 27: 1192-1194
doi: 10.1103/PhysRevLett.27.1192
10 Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J Phys Soc Jpn , 1972, 33: 1456-1458
doi: 10.1143/JPSJ.33.1456
11 Hirota R. Exact solution of the sine-Gordon equation for multiple collisions of solitons. J Phys Soc Jpn , 1972, 33: 1459-1463
doi: 10.1143/JPSJ.33.1459
12 Holloway P E, Pelinovsky P E, Talipova T, Barnes B. A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanogr , 1997, 27: 871-896
doi: 10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2
13 Kakutani T, Yamasaki N. Solitary waves on a two-layer fluid. J Phys Soc Jpn , 1978, 45: 674-679
doi: 10.1143/JPSJ.45.674
14 Kodama Y J, Wadati M. Wave propagation in nonlinear lattice III. J Phys Soc Jpn , 1976, 41: 1499-1504
doi: 10.1143/JPSJ.41.1499
15 Malomed B A, Stepanyants Y A. The inverse problem for the Gross-Pitaevskii equation. Chaos , 2010, 20: 013130
doi: 10.1063/1.3367776
16 Miura R M, Gardner C S, Kruskal M D. Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion. J Math Phys , 1968, 9: 1204-1209
doi: 10.1063/1.1664701
17 Slyunyaev A V. Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. JETP , 2001, 92: 529-534
doi: 10.1134/1.1364750
18 Slyunyaev A V, Pelinovski E N. Dynamics of large-amplitude solitons. JETP, 1999, 89: 173-181
doi: 10.1134/1.558966
19 Taha T R. A differential-difference equation for a KdV-MKdV equation. Math Comput Simulation , 1993, 35: 509-512
doi: 10.1016/0378-4754(93)90069-7
20 Vekslerchik V E. Implementation of the B?cklund transformations for the Ablowitz-Ladik hierarchy. J Phys A: Math Gen , 2006, 39: 6933-6953
doi: 10.1088/0305-4470/39/22/009
21 Wadati M. Wave propagation in nonlinear lattice I. J Phys Soc Jpn , 1975, 38: 673-680
doi: 10.1143/JPSJ.38.673
22 Wadati M. Wave propagation in nonlinear lattice II. J Phys Soc Jpn , 1975, 38: 681-686
doi: 10.1143/JPSJ.38.681
23 Wadati M, Watanabe M. Conservation laws of a Volterra system and nonlinear selfdual network equation. Prog Theor Phys , 1977, 57: 808-811
doi: 10.1143/PTP.57.808
24 Watanabe S. Ion acoustic soliton in plasma with negative ion. J Phys Soc Jpn , 1984, 53: 950-956
doi: 10.1143/JPSJ.53.950
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed