Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2013, Vol. 8 Issue (6) : 1437-1460    https://doi.org/10.1007/s11464-013-0331-9
RESEARCH ARTICLE
Global analysis of smooth solutions to a hyperbolic-parabolic coupled system
Yinghui ZHANG1,2(), Haiying DENG3, Mingbao SUN1
1. Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China; 2. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China; 3. Department of Mathematics, Hunan First Normal College, Changsha 410205, China
 Download: PDF(185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate a model arising from biology, which is a hyperbolicparabolic coupled system. First, we prove the global existence and asymptotic behavior of smooth solutions to the Cauchy problem without any smallness assumption on the initial data. Second, if the HsL1-norm of initial data is sufficiently small, we also establish decay rates of the global smooth solutions. In particular, the optimal L2 decay rate of the solution and the almost optimal L2 decay rate of the first-order derivatives of the solution are obtained. These results are obtained by constructing a new nonnegative convex entropy and combining spectral analysis with energy methods.

Keywords Global analysis      hyperbolic-parabolic system      decay rate      convex entropy     
Corresponding Author(s): ZHANG Yinghui,Email:zhangyinghui0910@126.com   
Issue Date: 01 December 2013
 Cite this article:   
Yinghui ZHANG,Haiying DENG,Mingbao SUN. Global analysis of smooth solutions to a hyperbolic-parabolic coupled system[J]. Front Math Chin, 2013, 8(6): 1437-1460.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0331-9
https://academic.hep.com.cn/fmc/EN/Y2013/V8/I6/1437
1 Corrias L, Perthame B, Zaag H. A chemotaxis model motivated by angiogenesis. C R Acad Sci Paris Ser I , 2003, 336: 141-146
doi: 10.1016/S1631-073X(02)00008-0
2 Corrias L, Perthame B, Zaag H. Global solutions of some chemotaxis and angiogenesis system in high space dimensions. Milan J Math , 2004, 72: 1-28
doi: 10.1007/s00032-003-0026-x
3 Duan R J, Lorz A, Markowich P. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations , 2010, 35(9): 1635-1673
doi: 10.1080/03605302.2010.497199
4 Duan R J, Ma H F. Global existence and convergence rates for 3-D compressible Navier-Stokes equations without heat conductivity. Indiana Univ Math J , 2008, 57(5): 2299-2319
doi: 10.1512/iumj.2008.57.3326
5 Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci , 2007, 17(5): 737-758
doi: 10.1142/S021820250700208X
6 Gueron S, Liron N. A model of herd grazing as a traveling wave: chemotaxis and stability. J Math Biol , 1989, 27: 595-608
doi: 10.1007/BF00288436
7 Guo J, Xiao J X, Zhao H J, Zhu C J. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci Ser B Engl Ed , 2009, 29(3): 629-641
8 Hoff D, Zumbrun K.Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J , 1995, 44: 604-676
doi: 10.1512/iumj.1995.44.2003
9 Horstmann D, Stevens A. A constructive approach to travelling waves in chemotaxis. J Nonlinear Sci , 2004, 14: 1-25
doi: 10.1007/s00332-003-0548-y
10 Horstmanna D, Winklerb M. Boundedness vs. blow-up in a chemotaxis system. J Differential Equations , 2005, 215: 52-107
doi: 10.1016/j.jde.2004.10.022
11 Kato S. On local and global existence theorems for a nonautonomous differential equation in a Banach space. Funkcial Ekvac , 1976, 19: 279-286
12 Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis . Kyoto: Kyoto University, 1984
13 Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis. J Theor Biol , 1971, 30: 235-248
doi: 10.1016/0022-5193(71)90051-8
14 Kinami S, Mei M, Omata S. Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations. Appl Anal , 2000, 75: 317-340
doi: 10.1080/00036810008840852
15 Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math , 1997, 57: 683-730
doi: 10.1137/S0036139995291106
16 Lui R, Wang Z A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol , 2010, 61: 739-761
doi: 10.1007/s00285-009-0317-0
17 Marcati P, Mei M, Rubino B. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech , 2005, 7: S224-S240
doi: 10.1007/s00021-005-0155-9
18 Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equation. Publ RIMS Kyoto Univ , 1976, 12: 169-189
doi: 10.2977/prims/1195190962
19 Mei M. Lq-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations. J Differential Equations , 1999, 158: 314-340
doi: 10.1006/jdeq.1999.3638
20 Nagai T, Ikeda T. Traveling waves in a chemotaxis model. J Math Biol , 1991, 30: 169-184
doi: 10.1007/BF00160334
21 Nirenberg L. On elliptic partial differential equations. Annali della Scuola Normale Superiore diPisa-Classe di Scienze , 1959, 13(2): 115-162
22 Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ Math , 1978, 128: 1053-1068
23 Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math , 1997, 57: 1044-1081
doi: 10.1137/S0036139995288976
24 Segal I E. Quantization and dispersion for nonlinear relativistic equations. In: Proc Conf on Math Theory of Elementary Particles . Cambridge: MIT Press, 1966, 79-108
25 Smoller J. ShockWaves and Reaction-Diffusion Equations. Berlin-New York: Springer-Verlag, 1983
doi: 10.1007/978-1-4684-0152-3
26 Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equ , 2006, 3: 561-574
doi: 10.1142/S0219891606000902
27 Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl , 2011, 379: 256-271
doi: 10.1016/j.jmaa.2011.01.006
28 Yang Y, Chen H, Liu W A. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J Math Anal , 2001, 33: 763-785
doi: 10.1137/S0036141000337796
29 Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc , 2007, 135(4): 1017-1027
doi: 10.1090/S0002-9939-06-08773-9
30 Zhang Y H, Tan Z, Lai B S, Sun M B. Global analysis of smooth solutions to a generalized hyperbolic-parabolic system modeling chemotaxis. Chinese Ann Math Ser A , 2012, 33: 27-38 (in Chinese)
31 Zhang Y H, Tan Z, Sun M B. Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system. Nonlinear Anal Real World Appl , 2013, 14: 465-482
doi: 10.1016/j.nonrwa.2012.07.009
32 Zhang Y H, Tan Z, Sun M B. Global smooth solutions to a coupled hyperbolic-parabolic system. Chinese Ann Math Ser A , 2013, 34: 29-46 (in Chinese)
[1] Guangqiang LAN, Fang XIA. General decay asymptotic stability of neutral stochastic differential delayed equations with Markov switching[J]. Front. Math. China, 2019, 14(4): 793-818.
[2] Jipu MA. A geometry characteristic of Banach spaces with c1-norm[J]. Front. Math. China, 2014, 9(5): 1089-1103.
[3] Huihui CHENG,Yonghua MAO. L2-Decay rate for non-ergodic Jackson network[J]. Front. Math. China, 2014, 9(5): 1033-1049.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed