Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2014, Vol. 9 Issue (1) : 213-238    https://doi.org/10.1007/s11464-013-0342-6
RESEARCH ARTICLE
Tight monomials for type B3
Xiaoming WANG()
College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
 Download: PDF(212 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The global crystal basis or canonical basis plays an important role in the theory of the quantized enveloping algebras and their representations. The tight monomials are the simplest elements in the canonical basis. We discuss the tight monomials in quantized enveloping algebra of type B3.

Keywords Quantized enveloping algebra      canonical basis      tight monomial     
Corresponding Author(s): WANG Xiaoming,Email:xming.wang@yahoo.com   
Issue Date: 01 February 2014
 Cite this article:   
Xiaoming WANG. Tight monomials for type B3[J]. Front Math Chin, 2014, 9(1): 213-238.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0342-6
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I1/213
1 Caldero P, Marsh R, Morier-Genoud S. Realisation of Lusztig cones. Represent Theory , 2004, 8: 458-478
doi: 10.1090/S1088-4165-04-00225-0
2 Deng B, Du J. Tight monomials and the monomial basis property. J Algebra , 2010, 324: 458-478
doi: 10.1016/j.jalgebra.2010.09.022
3 Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs , Vol 150. Providence: Amer Math Soc, 2008
doi: 10.1090/surv/150
4 Hu Y, Ye J, Yue X. Canonical basis for type A4—monomial elements. J Algebra , 2003, 263: 228-245
doi: 10.1016/S0021-8693(03)00066-8
5 Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc , 1990, 3: 447-498
doi: 10.1090/S0894-0347-1990-1035415-6
6 Lusztig G. Quivers, perverse sheaves, and the quantized enveloping algebras. J Amer Math Soc , 1991, 4: 366-421
doi: 10.1090/S0894-0347-1991-1088333-2
7 Lusztig G. Tight monomials in quantized enveloping algebras. Israel Math Conf Proc , 1993, 7: 117-132
8 Lusztig G. Introduction to Quantum Groups. Boston: Birkh?user , 1993
9 Marsh R. More tight monomials in quantized enveloping algebras. J Algebra , 1998, 204: 711-732
doi: 10.1006/jabr.1997.7370
10 Reineke M. Monomials in canonical bases of quantum groups and quadratic forms. J Pure Appl Algebra , 2001, 157: 301-309
doi: 10.1016/S0022-4049(00)00008-6
11 Wang X. Tight monomials for type G2 and A3.Comm Algebra , 2010, 38: 3597-3615
doi: 10.1080/00927870903200919
12 Wang X. Tight monomials for quantum enveloping algebras of rank-2 Kac-Moody Lie algebras. J Pure Appl Algebra , 2012, 216: 694-708
doi: 10.1016/j.jpaa.2011.08.005
13 Xi N. Canonical basis for type B2.J Algebra , 1999, 214: 8-21
doi: 10.1006/jabr.1998.7688
14 Xi N. Canonical basis for type A3.Comm Algebra , 1999, 27: 5703-5710
doi: 10.1080/00927879908826784
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed