|
|
|
Tight monomials for type B3 |
Xiaoming WANG( ) |
| College of Information Technology, Shanghai Ocean University, Shanghai 201306, China |
|
|
|
|
Abstract The global crystal basis or canonical basis plays an important role in the theory of the quantized enveloping algebras and their representations. The tight monomials are the simplest elements in the canonical basis. We discuss the tight monomials in quantized enveloping algebra of type B3.
|
| Keywords
Quantized enveloping algebra
canonical basis
tight monomial
|
|
Corresponding Author(s):
WANG Xiaoming,Email:xming.wang@yahoo.com
|
|
Issue Date: 01 February 2014
|
|
| 1 |
Caldero P, Marsh R, Morier-Genoud S. Realisation of Lusztig cones. Represent Theory , 2004, 8: 458-478 doi: 10.1090/S1088-4165-04-00225-0
|
| 2 |
Deng B, Du J. Tight monomials and the monomial basis property. J Algebra , 2010, 324: 458-478 doi: 10.1016/j.jalgebra.2010.09.022
|
| 3 |
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs , Vol 150. Providence: Amer Math Soc, 2008 doi: 10.1090/surv/150
|
| 4 |
Hu Y, Ye J, Yue X. Canonical basis for type A4—monomial elements. J Algebra , 2003, 263: 228-245 doi: 10.1016/S0021-8693(03)00066-8
|
| 5 |
Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc , 1990, 3: 447-498 doi: 10.1090/S0894-0347-1990-1035415-6
|
| 6 |
Lusztig G. Quivers, perverse sheaves, and the quantized enveloping algebras. J Amer Math Soc , 1991, 4: 366-421 doi: 10.1090/S0894-0347-1991-1088333-2
|
| 7 |
Lusztig G. Tight monomials in quantized enveloping algebras. Israel Math Conf Proc , 1993, 7: 117-132
|
| 8 |
Lusztig G. Introduction to Quantum Groups. Boston: Birkh?user , 1993
|
| 9 |
Marsh R. More tight monomials in quantized enveloping algebras. J Algebra , 1998, 204: 711-732 doi: 10.1006/jabr.1997.7370
|
| 10 |
Reineke M. Monomials in canonical bases of quantum groups and quadratic forms. J Pure Appl Algebra , 2001, 157: 301-309 doi: 10.1016/S0022-4049(00)00008-6
|
| 11 |
Wang X. Tight monomials for type G2 and A3.Comm Algebra , 2010, 38: 3597-3615 doi: 10.1080/00927870903200919
|
| 12 |
Wang X. Tight monomials for quantum enveloping algebras of rank-2 Kac-Moody Lie algebras. J Pure Appl Algebra , 2012, 216: 694-708 doi: 10.1016/j.jpaa.2011.08.005
|
| 13 |
Xi N. Canonical basis for type B2.J Algebra , 1999, 214: 8-21 doi: 10.1006/jabr.1998.7688
|
| 14 |
Xi N. Canonical basis for type A3.Comm Algebra , 1999, 27: 5703-5710 doi: 10.1080/00927879908826784
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|