Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2014, Vol. 9 Issue (1) : 17-30    https://doi.org/10.1007/s11464-013-0344-4
RESEARCH ARTICLE
Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges
Xie-Bin CHEN()
College of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
 Download: PDF(145 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The k-ary n-cube Qnk (n≥2 and k≥3) is one of the most popular interconnection networks. In this paper, we consider the problem of a faultfree Hamiltonian cycle passing through a prescribed linear forest (i.e., pairwise vertex-disjoint paths) in the 3-ary n-cube Qn3 with faulty edges. The following result is obtained. Let E0 (≠?) be a linear forest and F (≠?) be a set of faulty edges in Qn3 such that E0F = ?and |E0| + |F|≤2n - 2. Then all edges of E0 lie on a Hamiltonian cycle in Qn3-F,and the upper bound 2n-2 is sharp.

Keywords Hamiltonian cycle      fault-tolerance      3-ary n-cube      linear forest      interconnection network     
Corresponding Author(s): CHEN Xie-Bin,Email:chenxbfz@163.com   
Issue Date: 01 February 2014
 Cite this article:   
Xie-Bin CHEN. Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges[J]. Front Math Chin, 2014, 9(1): 17-30.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0344-4
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I1/17
1 Bondy J A, Murty U S R. Graph Theory. New York: Springer, 2007
2 Chen X B. Cycles passing through prescribed edges in a hypercube with some faulty edges. Inform Process Lett , 2007, 104: 211-215
doi: 10.1016/j.ipl.2007.06.014
3 Chen X B. On path bipancyclicity of hypercubes. Inform Process Lett , 2009, 109: 594-598
doi: 10.1016/j.ipl.2009.02.009
4 Chen X B. Hamitonian paths and cycles passing through a prescribed path in hypercubes. Inform Process Lett , 2009, 110: 77-82
doi: 10.1016/j.ipl.2009.10.010
5 Chen X B. Cycles passing through a prescribed path in a hypercube with faulty edges. Inform Process Lett , 2010, 110: 625-629
doi: 10.1016/j.ipl.2010.05.015
6 Dong Q, Yang X, Wang D. Embedding paths and cycles in 3-ary n-cubes with faulty nodes and links. Inform Sci , 2010, 180: 198-208
doi: 10.1016/j.ins.2009.09.002
7 Dvo?ák T. Hamiltonian cycles with prescribed edges in hypercubes. SIAM J Discrete Math , 2005, 19: 135-144
doi: 10.1137/S0895480103432805
8 Dvo?ák T, Greror P. Hamiltonian paths with prescribed edges in hypercubes. Discrete Math , 2007, 307: 1982-1998
doi: 10.1016/j.disc.2005.12.045
9 Fan J, Jia X. Edge-pancyclicity and path-embeddability of bijective connection graphs. Inform Sci , 2008, 178: 340-351
doi: 10.1016/j.ins.2007.08.012
10 Fan J, Jia X, Lin X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica , 2008, 51: 264-282
doi: 10.1007/s00453-007-9024-7
11 Fan J, Lin X, Jia X, Lau R W H. Edge-pancyclicity of twisted cubes. Lecture Notes in Computer Sciences , 2005, 3827: 1090-1099
doi: 10.1007/11602613_108
12 Hsieh S Y, Lin T J. Panconnectivity and edge-pancyclicity of k-ary n-cube. Networks , 2009, 54: 1-11
doi: 10.1002/net.20290
13 Hsieh S Y, Lin T J, Huang H L. Panconnectivity and edge-pancyclicity of 3-ary n-cubes. J Supercomputing , 2007, 42: 225-233
doi: 10.1007/s11227-007-0133-5
14 Li J, Wang S, Liu D. Pancyclicity of ternary n-cube networks under the conditional fault model. Inform Process Lett , 2011, 111: 370-374
doi: 10.1016/j.ipl.2011.01.009
15 Li J, Wang S, Liu D, Lin S. Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges. Inform Sci , 2011, 181: 2260-2267
doi: 10.1016/j.ins.2011.01.027
16 Lin S, Wang S, Li C. Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements. Discrete Appl Math , 2011, 159: 212-223
doi: 10.1016/j.dam.2010.10.015
17 Stewart I A, Xiang Y. Embedding long paths in k-ary n-cubes with faulty nodes and links. IEEE Trans Parall Distrib Sys , 2008, 19: 1071-1085
doi: 10.1109/TPDS.2007.70787
18 Stewart I A, Xiang Y, Bipanconnectivity and bipancyclicity in k-ary n-cubes. IEEE Trans Parall Distrib Sys , 2009, 20: 25-33
doi: 10.1109/TPDS.2008.45
19 Teng Y H, Tan J J M, Tsay C W, Hsu L H. The paths embedding of the arrangement graphs with prescribed vertices in given position. J Combin Optim , 2012, 24: 627-646
doi: 10.1007/s10878-011-9418-y
20 Tsai C H. Fault-free cycles passing through prescribed paths in hypercubes with faulty edges. Appl Math Lett , 2009, 22: 852-855
doi: 10.1016/j.aml.2008.08.021
21 Wang S, Li J, Wang R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cubes. Inform Sci , 2011, 181: 3054-3065
doi: 10.1016/j.ins.2011.03.011
22 Wang S, Lin S. Path embeddings in faulty 3-ary n-cubes. Inform Sci , 2010, 180: 191-197
doi: 10.1016/j.ins.2009.09.007
23 Wang W Q, Chen X B. A fault-free Hamiltonian cycle passing through prescribed edges in a hypercube with faulty edges. Inform Process Lett , 2008, 107: 205-210
doi: 10.1016/j.ipl.2008.02.016
24 Xiang Y, Stewart I A. Bipancyclicity in k-ary n-cubes with faulty edges under a conditional fault assumption. IEEE Trans Parall Distrib Sys , 2011, 22: 1506-1513
doi: 10.1109/TPDS.2011.22
25 Xu J M, Ma M. A survey on path and cycle embedding in some networks. Front Math China , 2009, 4: 217-252
doi: 10.1007/s11464-009-0017-5
26 Yang M C, Tan J J M, Hsu L H. Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes. J Parall Distrib Computing , 2007, 67: 362-368
doi: 10.1016/j.jpdc.2005.10.004
[1] Xie-Bin CHEN. Matchings extend to Hamiltonian cycles in hypercubes with faulty edges[J]. Front. Math. China, 2019, 14(6): 1117-1132.
[2] Shiying WANG, Zhenhua WANG, Mujiangshan WANG, Weiping HAN. g-Good-neighbor conditional diagnosability of star graph networks under PMC model and MM* model[J]. Front. Math. China, 2017, 12(5): 1221-1234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed