Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (2) : 355-376    https://doi.org/10.1007/s11464-014-0357-7
RESEARCH ARTICLE
Radically distributed value and normal families of meromorphic functions
Jianming QI1,2,Guowei ZHANG3,Wenjun YUAN2,4,*()
1. Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 200240, China
2. School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
3. Department of Mathematics, Anyang Normal University, Anyang 455000, China
4. Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, China
 Download: PDF(186 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.

Keywords Meromorphic function      Nevanlinna theory      normal family      angular characteristic function      radially distributed value     
Corresponding Author(s): Wenjun YUAN   
Issue Date: 16 May 2014
 Cite this article:   
Jianming QI,Guowei ZHANG,Wenjun YUAN. Radically distributed value and normal families of meromorphic functions[J]. Front. Math. China, 2014, 9(2): 355-376.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0357-7
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I2/355
1 BaernsteinA. Proof of Edrei’s spread conjecture. Proc Lond Math Soc, 1973, 26: 418-434
doi: 10.1112/plms/s3-26.3.418
2 BergweilerW, EremenkoA. On the singularities of the inverse to a meromorphic function of finite order. Rev Mat Iberoam, 1995, 11(2): 355-373
doi: 10.4171/RMI/176
3 ChenS J, LinW C, ChenJ F. on the growth of meromorphic functions with a radially distributed value. Indian J Pure Appl Math, 2011, 42(1): 53-70
doi: 10.1007/s13226-011-0004-x
4 ChuangC T. Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa dérivée. Bull Sci Math, 1951, 75: 171-190
5 EdreiA. Meromorphic functions with three radially distributed values. Trans Amer Math Soc, 1955, 78: 276-293 376 Jianming QI et al.
6 EdreiA. Sums of deficiencies of meromorphic function. J Analyse Math, 1965, 14: 79-107
doi: 10.1007/BF02806380
7 FangM L, ZalcmanL. On value distribution of f + α(f′)n. Sci China Ser A, 2008, 38(3): 279-285
8 Gol’dbergA A, OstrovskiiI V. The Distribution of Values of Meromorphic Functions. Moscow: Izdat Nauka, 1970 (in Russian)
9 HaymanW K. Meromorphic Functions. Oxford: Clarendon Press, 1964
10 HaymanW K, MilesJ. On the growth of a meromorphic function and its derivatives. Complex Variables, 1989, 12: 245-260
doi: 10.1080/17476938908814369
11 HeY Z, XiaoX Z. Algebroid Functions and Ordinary Differential Equations. Beijing: Science Press, 1988 (in Chinese)
12 LaineI. Nevanlinna Theory and Complex Differential Equations. Berlin: de Gruyter, 1993
13 NevanlinnaR. Uber die eigenschaften meromorphic funktionen in einem winkelraum. Acta Soc Sci Feen, 1925, 50: 1-45
14 PangX C, ZalcmanL. Normal families and shared values. Bull Lond Math Soc, 2000, 32: 325-331
doi: 10.1112/S002460939900644X
15 QiJ M, ZhuT Y. Some normal criteria about shared values with their multiplicity zeros. Abstr Appl Anal, 2010
doi: 10.1155/2010/147878
16 XuY, WuF Q, LiaoL W. Picard values and normal families of meromorphic functions. Proc Roy Soc Edinburgh Sect A, 2009, 139: 1091-1099
doi: 10.1017/S0308210508000462
17 YangL. Borel directions of meromorphic functions in an angular domain. Sci China, 1979, (Math Ser I): 149-163
18 YangL, YangC C. Angular distribution of values of f?f′. Sci China Ser A-Math, 1994, 37: 284-294
19 ZalcmanL. A heuristic principle in complex function theory. Amer Math Monthly, 1975, 82: 813-817
doi: 10.2307/2319796
20 ZhengJ H. On transcendental meromorphic functions with radially distributed values. Sci China Ser A-Math, 2004, 47: 401-416
doi: 10.1360/02ys0210
21 ZhengJ H. Value Distribution of Meromorphic Functions. Berlin: Springer, 2010
[1] Pai YANG, Liangwen LIAO, Qiaoyu CHEN. Derivatives of meromorphic functions and exponential functions[J]. Front. Math. China, 2018, 13(2): 417-433.
[2] Xiaobin ZHANG. Value sharing of meromorphic functions and some questions of Dyavanal[J]. Front Math Chin, 2012, 7(1): 161-176.
[3] ZHANG Zhanliang. On value distribution of f(k) - afn[J]. Front. Math. China, 2006, 1(4): 612-619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed