Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (2) : 455-476    https://doi.org/10.1007/s11464-014-0358-6
RESEARCH ARTICLE
Weak Galerkin finite element method for valuation of American options
Ran ZHANG1,*(),Haiming SONG1,Nana LUAN2
1. School of Mathematics, Jilin University, Changchun 130012, China
2. School of Insurance and Economics, University of International Business and Economics, Beijing 100190, China
 Download: PDF(1447 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce an artificial boundary to make the computational domain bounded. For the optimal exercise boundary, which satisfies a nonlinear Volterra integral equation, it is resolved by a higher-order collocation method based on graded meshes. With the computed optimal exercise boundary, the front-fixing technique is employed to transform the free boundary problem to a one-dimensional parabolic problem in a half infinite area. For the other spatial domain boundary, a perfectly matched layer is used to truncate the unbounded domain and carry out the computation. Finally, the resulting initial-boundary value problems are solved by weak Galerkin finite element method, and numerical examples are provided to illustrate the efficiency of the method.

Keywords American option      optimal exercise boundary      weak Galerkin finite element method     
Corresponding Author(s): Ran ZHANG   
Issue Date: 16 May 2014
 Cite this article:   
Ran ZHANG,Haiming SONG,Nana LUAN. Weak Galerkin finite element method for valuation of American options[J]. Front. Math. China, 2014, 9(2): 455-476.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0358-6
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I2/455
1 AllegrettoW, LinY, YangH. Finite element error estimates for a nonlocal problem in American option valuation. SIAM J Numer Anal, 2001, 39: 834-857
doi: 10.1137/S0036142900370137
2 AminK, KhannaA. Convergence of American option values from discrete-to continuous-time financial models. Math Finance, 1994, 4: 289-304
doi: 10.1111/j.1467-9965.1994.tb00059.x
3 BadeaL, WangJ. A new formulation for the valuation of American options, I: Solution uniqueness. In: ParkE-J, LeeJ, eds. Analysis and Scientific Computing. Proceedings of the 19th Daewoo Workshop in Pure Mathematics, Vol 19, Part II, 1999. 2000, 3-16
4 BadeaL, WangJ. A newformulation for the valuation of American options, II: Solution existence. In: ParkE-J, LeeJ, eds. Analysis and Scientific Computing. Proceedings of the 19th Daewoo Workshop in Pure Mathematics, Vol 19, Part II, 1999. 2000, 17-33
5 BerengerJ P. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys, 1994, 114: 185-200
doi: 10.1006/jcph.1994.1159
6 BerengerJ P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys, 1996, 127: 363-379
doi: 10.1006/jcph.1996.0181
7 BlackF, ScholesM. The pricing of options and corporate liabilities. J Pol Econ, 1973, 81: 637-659
doi: 10.1086/260062
8 BrennanM, SchwartzE. The valuation of American put options. J Finance, 1977, 32: 449-462
doi: 10.2307/2326779
9 BrennanM, SchwartzE. Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis. J Financ Quant Anal, 1978, 13: 461-474
doi: 10.2307/2330152
10 BrunnerH. The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math Comp, 1985, 45: 417-437
doi: 10.1090/S0025-5718-1985-0804933-3
11 BrunnerH. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge: Cambridge University Press, 2004
doi: 10.1017/CBO9780511543234
12 CarrP, JarrowR, MyneniR. Alternative characterizations of American put options. Math Finance, 1992, 2: 87-106
doi: 10.1111/j.1467-9965.1992.tb00040.x
13 CoxJ C, RossS A, RubinsteinM. Option pricing: A simplified approach. J Financ Econ, 1979, 7: 229-263
doi: 10.1016/0304-405X(79)90015-1
14 EvansJ D, KuskeR, KellerJ B. American options on assets with dividends near expiry. Math Finance, 2002, 12: 219-237
doi: 10.1111/1467-9965.02008
15 HanH, WuX. A fast numerical method for the Black-Scholes equation of American options. SIAM J Numer Anal, 2003, 41: 2081-2095
doi: 10.1137/S0036142901390238
16 HolmesA D, YangH. A front-fixing finite element method for the valuation of American options. SIAM J Sci Comput, 2008, 30: 2158-2180
doi: 10.1137/070694442
17 HullJ. Fundamentals of Futures and Options Markets. Upper Saddle River: Prentice Hall, 2007
18 JailletP, LambertonD, LapeyreB. Variational inequalities and the pricing of American options. Acta Appl Math, 1990, 21: 263-289
doi: 10.1007/BF00047211
19 JiangL. Mathematical Modeling and Methods of Option Pricing. Singapore: World Scientific Publishing Company, 2005
doi: 10.1142/5855
20 KimI J. The analytic valuation of American puts. Rev Financ Stud, 1990, 3: 547-572
doi: 10.1093/rfs/3.4.547
21 KwokY K. Mathematical Models of Financial Derivatives. 2nd ed. Berlin: Springer, 2008
22 LantosN, NatafF. Perfectly matched layers for the heat and advection-diffusion equations. J Comput Phys, 2010, 229: 9042-9052
doi: 10.1016/j.jcp.2010.08.004
23 LinY P, ZhangK, ZouJ. Studies on some perfectly matched layers for one-dimensional time-dependent systems. Adv Comput Math, 2009, 30: 1-35
doi: 10.1007/s10444-007-9055-2
24 MaJ, XiangK, JiangY. An integral equation method with high-order collocation implementations for pricing American put options. Int J Econ Finance, 2010, 2: 102-112
25 MuL, WangJ, WangY, YeX. A computational study of the weak Galerkin method for second-order elliptic equations. Numer Algorithms, 2012
doi: 10.1007/s11075-012-9651-1
26 MuL, WangJ, WeiG, YeX, ZhaoS. Weak Galerkin method for second order elliptic interface problem. J Comput Phys, 2013, 250: 106-125
doi: 10.1016/j.jcp.2013.04.042
27 SchwartzE S. The valuation of warrants: Implementing a new approach. J Financ Econ, 1977, 4: 79-93
doi: 10.1016/0304-405X(77)90037-X
28 WangJ, YeX. A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math, 2013, 241: 103-115
doi: 10.1016/j.cam.2012.10.003
[1] Chi Yan AU, Eric S. FUNG, Leevan LING. Numerical methods for backward Markov chain driven Black-Scholes option pricing[J]. Front Math Chin, 2011, 6(1): 17-33.
[2] LIN Jianwei, LIANG Jin. Pricing of perpetual American and Bermudan options by binomial tree method[J]. Front. Math. China, 2007, 2(2): 243-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed