|
|
|
Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations |
Miao WANG1,Jiang-Lun WU1,2( ) |
1. Department of Mathematics, Swansea University, Swansea SA2 8PP, UK 2. School of Mathematics, Northwest University, Xi’an 710127, China |
|
| 1 |
AlbeverioS, MolchanovS A, SurgailisD. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457-484 doi: 10.1007/BF01268990
|
| 2 |
BlackF, ScholesM. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637-654 doi: 10.1086/260062
|
| 3 |
BurgersJ M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974 doi: 10.1007/978-94-010-1745-9
|
| 4 |
ChowP L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007
|
| 5 |
CoxJ C, LelandH E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982
|
| 6 |
CrandallM G, IshiiH, LionsP L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1-67 doi: 10.1090/S0273-0979-1992-00266-5
|
| 7 |
Da PratoG, ZabczykJ. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992 doi: 10.1017/CBO9780511666223
|
| 8 |
Da PratoG, ZabczykJ. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996 doi: 10.1017/CBO9780511662829
|
| 9 |
DafermosC M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005
|
| 10 |
ElworthyD K, TrumanA. The diffusion equation and classical mechanics: An elementary formula. In: AlbeverioS, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136-146 doi: 10.1007/3-540-11956-6_115
|
| 11 |
FlemingW H, SonerH M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006
|
| 12 |
FreidlinM I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985
|
| 13 |
GongF Z, MaZ M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449-476 doi: 10.1006/jfan.1996.0072
|
| 14 |
HandaK. On a stochastic PDE related to Burgers equation with noise. In: FunakiT, WoyczynskiW A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996
|
| 15 |
HodgesS, CarverhillA. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395-405 doi: 10.2307/2234778
|
| 16 |
HodgesS, LiaoC H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004
|
| 17 |
IkedaN, WatanabeS. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989
|
| 18 |
KardarM P, ParisiG, ZhangY-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889-892 doi: 10.1103/PhysRevLett.56.889
|
| 19 |
KrugJ, SpohnH. Kinetic roughening of growing surfaces. In: GodrécheC, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412-525
|
| 20 |
MajdaA. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984 doi: 10.1007/978-1-4612-1116-7
|
| 21 |
MajdaA, TimofeyevI. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413-12417 doi: 10.1073/pnas.230433997
|
| 22 |
MalliavinP, ThalmaierA. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006
|
| 23 |
ØksendalB. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003
|
| 24 |
PrévôtC, RöcknerM. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007
|
| 25 |
SmollerJ. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994 doi: 10.1007/978-1-4612-0873-0
|
| 26 |
SpohnH. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991 doi: 10.1007/978-3-642-84371-6
|
| 27 |
SteinE M, SteinJ C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727-752 doi: 10.1093/rfs/4.4.727
|
| 28 |
StroockD W, VaradhanS R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979
|
| 29 |
TrumanA. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308-2315 doi: 10.1063/1.523240
|
| 30 |
TrumanA, WangF-Y, WuJ-L, YangW. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971-1976 doi: 10.1007/s11425-012-4463-2
|
| 31 |
TrumanA, ZhaoH Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: DaviesI M, TrumanA, ElworthyD K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441-464
|
| 32 |
TrumanA, ZhaoH Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283-307 doi: 10.1063/1.531391
|
| 33 |
TrumanA, ZhaoH Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231-248 doi: 10.1007/s002200050357
|
| 34 |
WalshJ B. An Introduction to Stochastic Partial Differential Equations. In: CarmonaR, KestenH, WalshJ B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265-439 doi: 10.1007/BFb0074920
|
| 35 |
WangF-Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013 doi: 10.1007/978-1-4614-7934-5
|
| 36 |
WoyczynskiW A. Burgers-KPZ Turbulence. Göttingen lectures.Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998
|
| 37 |
WuJ-L, YangW. On stochastic differential equations and a generalised Burgers equation. In: ZhangT, ZhouX Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425-435
|
| 38 |
YongJ, ZhouX Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999 doi: 10.1007/978-1-4612-1466-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|