Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (3) : 601-622    https://doi.org/10.1007/s11464-014-0364-8
RESEARCH ARTICLE
Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations
Miao WANG1,Jiang-Lun WU1,2()
1. Department of Mathematics, Swansea University, Swansea SA2 8PP, UK
2. School of Mathematics, Northwest University, Xi’an 710127, China
 Download: PDF(197 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on a recent result on linking stochastic differential equations on ?d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensional stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.

Keywords Characterization theorem      Burgers-KPZ type nonlinear equations in infinite dimensions      infinite-dimensional semi-linear stochastic differential equations      Galerkin approximation      Girsanov transformation      stochastic heat equation      path-independence      Fréchet differentiation     
Issue Date: 24 June 2014
 Cite this article:   
Miao WANG,Jiang-Lun WU. Necessary and sufficient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations[J]. Front. Math. China, 2014, 9(3): 601-622.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0364-8
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I3/601
1 AlbeverioS, MolchanovS A, SurgailisD. Stratified structure of the Universe and Burgers’ equation: A probabilistic approach. Probab Theory Related Fields, 1994, 100: 457-484
doi: 10.1007/BF01268990
2 BlackF, ScholesM. The pricing of options and corporate liabilities. J Political Economy, 1973, 81(3): 637-654
doi: 10.1086/260062
3 BurgersJ M. The Nonlinear Diffusion Equations. Boston: Reidel, 1974
doi: 10.1007/978-94-010-1745-9
4 ChowP L. Stochastic Partial Differential Equations. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. Boca Raton: Chapman and Hall/CRC, 2007
5 CoxJ C, LelandH E. On dynamic investment strategies. In: Proceedings of the Seminar on the Analysis of Security Prices. Centre for Research in Security Prices, University of Chicago, 1982
6 CrandallM G, IshiiH, LionsP L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (N S), 1992, 27(1): 1-67
doi: 10.1090/S0273-0979-1992-00266-5
7 Da PratoG, ZabczykJ. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992
doi: 10.1017/CBO9780511666223
8 Da PratoG, ZabczykJ. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, Vol 229. Cambridge: Cambridge University Press, 1996
doi: 10.1017/CBO9780511662829
9 DafermosC M. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Heidelberg: Springer-Verlag, 2005
10 ElworthyD K, TrumanA. The diffusion equation and classical mechanics: An elementary formula. In: AlbeverioS, et al, eds. Stochastic Processes in Quantum Physics. Lecture Notes in Physics, Vol 173. Berlin: Springer-Verlag, 1982, 136-146
doi: 10.1007/3-540-11956-6_115
11 FlemingW H, SonerH M. Controlled Markov Processes and Viscosity Solutions. 2nd ed. Stochastic Modelling and Applied Probability, Vol 25. New York: Springer, 2006
12 FreidlinM I. Functional Integration and Partial Differential Equations. Ann Math Stud, Vol 109. Princeton: Princeton University Press, 1985
13 GongF Z, MaZ M. Invariance of Malliavin fields on it’s Wiener space and on abstract Wiener space. J Funct Anal, 1996, 138(2): 449-476
doi: 10.1006/jfan.1996.0072
14 HandaK. On a stochastic PDE related to Burgers equation with noise. In: FunakiT, WoyczynskiW A, eds. Hydrodynamic Limit and Burgers’ Turbulence. Berlin, Heidelberg, New York: Springer-Verlag, 1996
15 HodgesS, CarverhillA. Quasi mean reversion in an efficient stock market: the characterisation of economic equilibria which support Black-Scholes Option pricing. Economic J, 1993, 103: 395-405
doi: 10.2307/2234778
16 HodgesS, LiaoC H. Equilibrium Price Processes, Mean Reversion and Consumption Smoothing. Working paper, 2004
17 IkedaN, WatanabeS. Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam and Tokyo: North-Holland and Kodansha Ltd, 1989
18 KardarM P, ParisiG, ZhangY-C. Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56: 889-892
doi: 10.1103/PhysRevLett.56.889
19 KrugJ, SpohnH. Kinetic roughening of growing surfaces. In: GodrécheC, ed. Solids Far from Equilibrium: Growth Morphology and Defects. Cambridge: Cambridge University Press, 1991, 412-525
20 MajdaA. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Math Sci, No 53. New York: Springer-Verlag, 1984
doi: 10.1007/978-1-4612-1116-7
21 MajdaA, TimofeyevI. Remarkable statistical behavior for truncated Burgers-Hopf dynamics. Proc Natl Acad Sci USA, 2000, 97: 12413-12417
doi: 10.1073/pnas.230433997
22 MalliavinP, ThalmaierA. Stochastic Calculus of Variations in Mathematical Finance. Springer Finance. Berlin: Springer-Verlag, 2006
23 ØksendalB. Stochastic Differential Equations. An Introduction with Applications. 6th ed. Universitext. Berlin: Springer-Verlag, 2003
24 PrévôtC, RöcknerM. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, Vol 1905. Berlin: Springer, 2007
25 SmollerJ. Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1994
doi: 10.1007/978-1-4612-0873-0
26 SpohnH. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1991
doi: 10.1007/978-3-642-84371-6
27 SteinE M, SteinJ C. Stock price distributions with stochastic volatility: an analytic approach. Rev Financial Studies, 1991, 4(4): 727-752
doi: 10.1093/rfs/4.4.727
28 StroockD W, VaradhanS R S. Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, Vol 233. Berlin: Springer-Verlag, 1979
29 TrumanA. Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J Math Phys, 1977, 18: 2308-2315
doi: 10.1063/1.523240
30 TrumanA, WangF-Y, WuJ-L, YangW. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55(10): 1971-1976
doi: 10.1007/s11425-012-4463-2
31 TrumanA, ZhaoH Z. The stochastic Hamilton Jacobi equation, stochastic heat equation and Schrödinger equation. In: DaviesI M, TrumanA, ElworthyD K, eds. Stochastic Analysis and Applications. Singapore: World Scientific, 1996, 441-464
32 TrumanA, ZhaoH Z. On stochastic diffusion equations and stochastic Burgers equations. J Math. Phys, 1996, 37: 283-307
doi: 10.1063/1.531391
33 TrumanA, ZhaoH Z. Stochastic Burgers equations and their semi-classical expansions. Comm Math Phys, 1998, 194: 231-248
doi: 10.1007/s002200050357
34 WalshJ B. An Introduction to Stochastic Partial Differential Equations. In: CarmonaR, KestenH, WalshJ B, et al, eds. École d’Été de Probabilitiés de Sanit Flour, XIV-1984. Lecture Notes in Mathematics, Vol 1180. Berlin: Springer-Verlag, 1986, 265-439
doi: 10.1007/BFb0074920
35 WangF-Y. Harnack Inequalities for Stochastic Partial Differential Equations. Springer Briefs in Mathematics. New York: Springer, 2013
doi: 10.1007/978-1-4614-7934-5
36 WoyczynskiW A. Burgers-KPZ Turbulence. Göttingen lectures.Lecture Notes in Mathematics, Vol 1700. Berlin: Springer-Verlag, 1998
37 WuJ-L, YangW. On stochastic differential equations and a generalised Burgers equation. In: ZhangT, ZhouX Y, eds. Stochastic Analysis and Applications to Finance -Festschrift in Honor of Professor Jia-An Yan. Interdisciplinary Mathematical Sciences, Vol 13. Hackensck: World Scientific Publ, 2012, 425-435
38 YongJ, ZhouX Y. Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics-Stochastic Modelling and Applied Probability, Vol 43. New York: Springer-Verlag, 1999
doi: 10.1007/978-1-4612-1466-3
[1] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed