Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (5) : 1243-1261    https://doi.org/10.1007/s11464-014-0379-1
RESEARCH ARTICLE
Relative locations of subwords in free operated semigroups and Motzkin words
Shanghua ZHENG1,LI GUO1,2,*()
1. Department of Mathematics, Lanzhou University, Lanzhou 730000, China
2. Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA
 Download: PDF(180 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bracketed words are basic structures both in mathematics (such as Rota-Baxter algebras) and mathematical physics (such as rooted trees) where the locations of the substructures are important. In this paper, we give the classification of the relative locations of two bracketed subwords of a bracketed word in an operated semigroup into the separated, nested, and intersecting cases. We achieve this by establishing a correspondence between relative locations of bracketed words and those of words by applying the concept of Motzkin words which are the algebraic forms of Motzkin paths.

Keywords Bracketed word      relative location      operated semigroup      Motzkin word      Motzkin path      rooted tree     
Corresponding Author(s): LI GUO   
Issue Date: 24 June 2015
 Cite this article:   
Shanghua ZHENG,LI GUO. Relative locations of subwords in free operated semigroups and Motzkin words[J]. Front. Math. China, 2015, 10(5): 1243-1261.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0379-1
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I5/1243
1 Alonso L. Uniform generation of a Motzkin word. Theoret Comput Sci, 1994, 134: 529-536
https://doi.org/10.1016/0304-3975(94)00086-7
2 Baader F, Nipkow T. Term Rewriting and All That. Cambridge: Cambridge Univ Press, 1998
3 Bogner C, Weinzierl S. Blowing up Feynman integrals. Nucl Phys B Proc Suppl, 2008, 183: 256-261
https://doi.org/10.1016/j.nuclphysbps.2008.09.113
4 Bokut L A, Chen Y Q, Chen Y S. Composition-Diamond lemma for tensor product of free algebras. J Algebra, 2010, 323: 2520-2537
https://doi.org/10.1016/j.jalgebra.2010.02.021
5 Bokut L A, Chen Y Q, Deng X, Gr?bner-Shirshov bases for Rota-Baxter algebras. Sib Math J, 2010, 51: 978-988
https://doi.org/10.1007/s11202-010-0097-1
6 Bokut L A, Chen Y Q, Li Y. Gr?bner-Shirshov bases for categories. In: Operads and Universal Algebra. Singapore: World Scientific Press, 2012, 1-23
https://doi.org/10.1142/9789814365123_0001
7 Bokut L A, Chen Y Q, Qiu J. Greobner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89-110
https://doi.org/10.1016/j.jpaa.2009.05.005
8 Buchberger B. An algorithm for finding a basis for the residue class ring of a zerodimensional polynomial ideal. Ph D Thesis, University of Innsbruck, Austria, 1965 (in German)
9 Connes A, Kreimer D. Hopf algebras, renormalization and concommutative geometry. Comm Math Phys, 1998, 199: 203-242
https://doi.org/10.1007/s002200050499
10 Connes A, Kreimer D. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249-273
https://doi.org/10.1007/s002200050779
11 Donaghey R, Shapiro L W. Motzkin numbers. J Combin Theory Ser A, 1977, 23: 291-301
https://doi.org/10.1016/0097-3165(77)90020-6
12 Flajolet P. Mathematical methods in the analysis of algorithms and data structures. In: Trends in Theoretical Computer Science (Udine, 1984). Principles Comput Sci Ser 12. Rockville: Computer Sci Press, 1988, 225-304
13 Guo L. Operated semigroups, Motzkin paths and rooted trees. J Algebraic Combin, 2009, 29: 35-62
https://doi.org/10.1007/s10801-007-0119-7
14 Guo L. An Introduction to Rota-Baxter Algebra. Beijing/Boston: Higher Education Press/International Press, 2012
15 Guo L, Sit W, Zhang R. Differential type operators and Gr?bner-Shirshov bases. J Symbolic Comput, 2013, 52: 97-123
https://doi.org/10.1016/j.jsc.2012.05.014
16 Krajewski T, Wulkenhaar R. On Kreimer’s Hopf algebra structure of Feynman graphs. Eur Phys J C, 1999, 7: 697-708
https://doi.org/10.1007/s100529801037
17 Kreimer D. On overlapping divergences. Comm Math Phys, 1999, 204: 669-689
https://doi.org/10.1007/s002200050661
18 Sapounakis A, Tsikouras P. On k-colored Motzkin words. J Integer Seq, 2004, 7: Article 04. 2.5.
19 Shirshov A I. Some algorithmic problem for ?-algebras. Sibirsk Mat Zh, 1962, 3: 132-137
20 Zheng S, Gao X, Guo L, Sit W. Rota-Baxter type operators, rewriting systems and Gr?bner-Shirshov bases. Preprint
[1] Shanghua ZHENG,Li GUO. Free involutive Hom-semigroups and Hom-associative algebras[J]. Front. Math. China, 2016, 11(2): 497-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed