Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 69-89    https://doi.org/10.1007/s11464-014-0394-2
RESEARCH ARTICLE
Algorithms for enumeration problem of linear congruence modulo m as sum of restricted partition numbers
Tian-Xiao HE1, Peter J. -S. SHIUE1()
1. Department of Mathematics, Illinois Wesleyan University, Bloomington, IL 61702, USA
2. Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4020, USA
 Download: PDF(157 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the congruence x 1 + x 2 + + x rc (mod m), where m and r are positive integers and c m : { 0 , 1 , , m 1 } ( m 2 ). Recently, W. -S. Chou, T. X. He, and Peter J. -S. Shiue considered the enumeration problems of this congruence, namely, the number of solutions with the restriction x 1 x 2 x r, and got some properties and a neat formula of the solutions. Due to the lack of a simple computational method for calculating the number of the solution of the congruence, we provide an algebraic and a recursive algorithms for those numbers. The former one can also give a new and simple approach to derive some properties of solution numbers.

Keywords Congruence      multiset congruence solution      restricted integer partition     
Corresponding Author(s): Peter J. -S. SHIUE   
Issue Date: 30 December 2014
 Cite this article:   
Tian-Xiao HE,Peter J. -S. SHIUE. Algorithms for enumeration problem of linear congruence modulo m as sum of restricted partition numbers[J]. Front. Math. China, 2015, 10(1): 69-89.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0394-2
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/69
1 G E Andrews. The Theory of Partitions. EncycloMath Appls, Vol 2. London: Addison-Wesley, 1976
2 P J Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge: Cambridge University Press, 1994
3 W-S Chou, T X He, P J-S Shiue. Enumeration problems for a linear congruence modulo m.Taiwanese J Math, 2014, 18(1): 265–275
https://doi.org/10.11650/tjm.18.2014.2295
4 N J Fine. Binomial coefficients modulo a prime. Amer Math Monthly, 1947, 54: 589–592
https://doi.org/10.2307/2304500
5 R K Guy. Parker’s permutation problem involves the Catalan numbers. Amer Math Monthly, 1993, 100(March): 287–289
https://doi.org/10.2307/2324467
6 J D Opdyke. A unified approach to algorithms generating unrestricted and restricted integer compositions and integer partitions. J Math Model Algorithms, 2010, 9: 53–97
https://doi.org/10.1007/s10852-009-9116-2
7 H Rademacher. Topics in Analytic Number Theory. Grundlehren der mathematischen Wissenschaften, 169. New York-Heidelberg: Springer-Verlag, 1973
8 L A Sanchis, M B Squire. Parallel algorithms for counting and randomly generating integer partitions. J Paral Distrib Comput, 1996, 34: 29–35
https://doi.org/10.1006/jpdc.1996.0043
9 R P Stanley. Enumerative Combinatorics, Vol 2. Cambridge Stud Adv Math, Vol 62. Cambridge: Cambridge Univ Press, 1998
10 R P Stanley. Catalan Addendum.
[1] Lingli XIA, Jing YANG. Sign or root of unity ambiguities of certain Gauss sums[J]. Front Math Chin, 2012, 7(4): 743-764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed