Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 863-880    https://doi.org/10.1007/s11464-014-0401-7
RESEARCH ARTICLE
Deviation matrix and asymptotic variance for GI/M/1-type Markov chains
Yuanyuan LIU, Pengfei WANG(), Yanmin XIE
School of Mathematics, New Campus, Central South University, Changsha 410083, China
 Download: PDF(199 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate deviation matrix for discrete-time GI/M/1-type Markov chains in terms of the matrix-analytic method, and revisit the link between deviation matrix and the asymptotic variance. Parallel results are obtained for continuous-time GI/M/1-type Markov chains based on the technique of uniformization. We conclude with A. B. Clarke’s tandem queue as an illustrative example, and compute the asymptotic variance for the queue length for this model.

Keywords GI/M/1-type Markov chains      deviation matrix      asymptotic variance      matrix-analytic method     
Corresponding Author(s): Pengfei WANG   
Issue Date: 26 August 2014
 Cite this article:   
Yuanyuan LIU,Pengfei WANG,Yanmin XIE. Deviation matrix and asymptotic variance for GI/M/1-type Markov chains[J]. Front. Math. China, 2014, 9(4): 863-880.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0401-7
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/863
1 S Asmussen, M Bladt. Poisson’s equation for queues driven by a Markovian marked point process. Queueing Syst, 1994, 17: 235−274
https://doi.org/10.1007/BF01158696
2 D A Bini, G Latouche, B Meini. Numerical Methods for Structured Markov Chains. Oxford: Oxford University Press, 2005
https://doi.org/10.1093/acprof:oso/9780198527688.001.0001
3 P Coolen-Schrijner, E A Van Doorn. The deviation matrix of a continuous-time Markov chain. Probab Engrg Inform Sci, 2002, 16: 351−366
https://doi.org/10.1017/S0269964802163066
4 S Dendievel, G Latouche, Y Liu. Poisson’s equation for discrete-time quasi-birth-anddeath processes. Performance Evaluation, 2013, 70: 564−577
https://doi.org/10.1016/j.peva.2013.05.008
5 P W Glynn. Poisson’s equation for the recurrent M/G/1 queue. Adv Appl Probab, 1994, 26(4): 1044−1062
https://doi.org/10.2307/1427904
6 P W Glynn, S P Meyn. A Liapounov bound for solutions of the Poisson equation. Ann Probab, 1996, 24(2): 916−931
https://doi.org/10.1214/aop/1039639370
7 W K Grassmann. The asymptotic variance of a time average in a birth-death process. Ann Oper Res, 1987, 8: 165−174
https://doi.org/10.1007/BF02187089
8 S Jiang, Y Liu, S Yao. Poisson’s equation for discrete-time single-birth processes. Statist Probab Lett, 2014, 85: 78−83
https://doi.org/10.1016/j.spl.2013.11.008
9 G Latouche, V Ramaswami. A logarithmic reduction algorithm for quasi-birth-anddeath processes. J Appl Probab, 1993, 30(3): 650−674
https://doi.org/10.2307/3214773
10 G Latouche, V Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Philadelphia: SIAM, 1999
https://doi.org/10.1137/1.9780898719734
11 Y Liu. Additive functionals for discrete-time Markov chains with applications to birthdeath processes. J Appl Probab, 2011, 48(4): 925−937
https://doi.org/10.1239/jap/1324046010
12 Y Liu, Z Hou. Several types of ergodicity for M/G/1-type Markov chains and Markov processes. J Appl Probab, 2006, 43(1): 141−158
https://doi.org/10.1239/jap/1143936249
13 Y Liu, Y H Zhang. Central limit theorems for Markov processes with applications to single birth processes. Preprint, 2013
14 Y Mao, Y Tai, Y Q Zhao, J Zou. Ergodicity for the GI/G/1-type Markov chain. , 2012
15 C D Meyer. The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev, 1975, 17(3): 443−464
https://doi.org/10.1137/1017044
16 S P Meyn, R L Tweedie. Markov Chains and Stochastic Stability. 2nd ed. New York: Cambridge University Press, 2009
https://doi.org/10.1017/CBO9780511626630
17 M F Neuts. Moment formulas for the Markov renewal branching process. Adv Appl Probab, 1976, 8(4): 690−711
https://doi.org/10.2307/1425930
18 M F Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Baltimore: The Johns Hopkins University Press, 1981
19 M F Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. New York: Marcel Dekker, 1989
20 J F Pérez, M Telek, B V Houdt. A fast Newton’s iteration for M/G/1-type and GI/M/1-type Markov chains. Stoch Models, 2012, 28: 557−583
https://doi.org/10.1080/15326349.2012.726038
21 W Whitt. Asymptotic formulas for Markov processes with applications to simulation. Oper Res, 1992, 40: 279−291
https://doi.org/10.1287/opre.40.2.279
22 Y Q Zhao. Censoring technique in studying block-structured Markov chains. In: G Latouche, P G Taylor, eds. Advances in Algorithmic Methods for Stochastic Models: Proceedings of the 3rd International Conference on Matrix Analytic Methods. NJ: Notable Publications, 2000, 417−433
23 Y Q Zhao, W Li, W J Braun. Censoring, factorizations, and spectral analysis for transition matrices with block-repeating entries. Methodol Comput Appl Probab, 2003, 5: 35−58
https://doi.org/10.1023/A:1024125320911
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed