Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (6) : 1367-1379    https://doi.org/10.1007/s11464-014-0419-x
RESEARCH ARTICLE
Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources
Hui WANG1,2,*(),Tiecheng XIA2
1. College of Art and Sciences, Shanghai Maritime University, Shanghai 201306, China
2. Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(125 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A super Jaulent-Miodek hierarchy and its super Hamiltonian structures are constructed by means of a kind of Lie super algebras and super trace identity. Moreover, the self-consistent sources of the super Jaulent-Miodek hierarchy is presented based on the theory of self-consistent sources. Furthermore, the infinite conservation laws of the super Jaulent-Miodek hierarchy are also obtained. It is worth noting that as even variables are boson variables, odd variables are fermi variables in the spectral problem, the commutator is different from the ordinary one.

Keywords Super Jaulent-Miodek hierarchy      self-consistent sources      fermi variables      conservation law     
Corresponding Author(s): Hui WANG   
Issue Date: 29 October 2014
 Cite this article:   
Hui WANG,Tiecheng XIA. Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources[J]. Front. Math. China, 2014, 9(6): 1367-1379.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0419-x
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I6/1367
1 Chowdhury A R, Roy S. On the Backlund transformation and Hamiltonian properties of superevaluation equations. J Math Phys, 1986, 27: 2464
https://doi.org/10.1063/1.527309
2 Dong H H, Wang X Z. Lie algebras and Lie super algebra for the integrable couplings of NLS-MKdV hierarchy. Commun Nonlinear Sci Numer Simul, 2009, 14: 4071-4077
https://doi.org/10.1016/j.cnsns.2009.03.010
3 Ge J Y, Xia T C. A New integrable couplings of Classical-Boussinesq hierarchy with self-consistent sources. Commun Theor Phys, 2010, 54: 1-6
https://doi.org/10.1088/0253-6102/54/1/01
4 Guo F K. A hierarchy of integrable Hamiltonian equations. Math Appl Sin, 2000, 23(2): 181-187
5 He J S, Yu J, Cheng Y. Binary nonlinearization of the super AKNS system. Modern Phys Lett B, 2008, 22: 275-288
https://doi.org/10.1142/S0217984908014778
6 Hu X B. An approach to generate superextensions of integrable systems. J Phys A: Math Gen, 1997, 30: 619-632
https://doi.org/10.1088/0305-4470/30/2/023
7 Jaulent M, Miodek K. Nonlinear evolution equations associated with enegry-dependent Schr?dinger potentials. Lett Math Phys, 1976, 1: 243
https://doi.org/10.1007/BF00417611
8 Li Z. Super-Burgers soliton hierarchy and it super-Hamiltonian structure. Modern Phys Lett B, 2009, 23: 2907-2914
https://doi.org/10.1142/S0217984909020990
9 Ma W X. Integrable couplings of soliton equations by perturbations I. A general theory and application to the KdV hierarchy. Methods Appl Anal, 2000, 7: 21-56
10 Ma W X. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal, 2009, 71: 1716-1726
https://doi.org/10.1016/j.na.2009.02.045
11 Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 1996, 7: 1227-1250
https://doi.org/10.1016/0960-0779(95)00104-2
12 Ma W X, Fuchssteiner B. The bi-Hamiltonian structures of the perturbation equ<?Pub Caret?>ations of KdV hierarchy. Phys Lett A, 1996, 213: 49-55
https://doi.org/10.1016/0375-9601(96)00112-0
13 Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49: 033511
https://doi.org/10.1063/1.2897036
14 Mel’nikov V K. Integration of the nonlinear Schr?dinger equation with a source. Inverse Problems, 1992, 8: 133
https://doi.org/10.1088/0266-5611/8/1/009
15 Miua R M, Gardner C S, Gardner M D. The KdV equation has infinitely many integrals of motion conservation laws and constants of motion. J Math Phys, 1968, 9: 1204-1209
16 Shchesnovich V S, Doktorov E V. Modified Manakov system with self-consistent source. Phys Lett A, 1996, 213: 23-31
https://doi.org/10.1016/0375-9601(96)00090-4
17 Tao S X, Xia T C. Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett, 2010, 27: 040202
https://doi.org/10.1088/0256-307X/27/4/040202
18 Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A: Math Gen, 1989, 22: 2375-2392
https://doi.org/10.1088/0305-4470/22/13/031
19 Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30: 330-338
https://doi.org/10.1063/1.528449
20 Tu G Z. A trace identity and its application to the theory of discrete integrable systems. J Phys A, 1990, 23: 3903-3922
https://doi.org/10.1088/0305-4470/23/17/020
21 Tu G Z. An extension of a theorem on gradients conserved densities of integrable system. Northeastern Math J, 1990, 6: 26
22 Wadati M, Sanuki H, Konno K. Relationships among inverse method, B?ckland transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53: 419-436
https://doi.org/10.1143/PTP.53.419
23 Wang H, Xia T C. Conservation laws for a super G-J hierarchy with self-consistent sources. Commun Nonlinear Sci Numer Simul, 2012, 17: 566-572
https://doi.org/10.1016/j.cnsns.2011.06.007
24 Wang H, Xia T C. Conservation laws and self-consistent sources for a super KN hierarchy. Appl Math Comput, 2013, 219: 5458-5464
https://doi.org/10.1016/j.amc.2012.11.042
25 Wang H, Xia T C. The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy. J Math Phys, 2013, 54: 043505
https://doi.org/10.1063/1.4799914
26 Wang H, Xia T C. The fractional supertrace identity and its application to the super Jaulent-Miodek hierarchy. Commun Nonlinear Sci Numer Simul, 2013, 18: 2859-2867
https://doi.org/10.1016/j.cnsns.2013.02.005
27 Wang X Z, Dong H H. A Lie superalgebra and corresponding hierarchy of evolution equations. Modern Phys Lett B, 2009, 23: 3387-3396
https://doi.org/10.1142/S0217984909021429
28 Xia T C. Two new integrable couplings of the soliton hierarchies with self-consistent sources. Chin Phys B, 2010, 19: 100303
https://doi.org/10.1088/1674-1056/19/10/100303
29 Yang H X, Sun Y P. Hamiltonian and super-Hamiltonian extensions related to Broer-Kaup-Kupershmidt System. Int J Theor Phys, 2010, 49: 349-364
https://doi.org/10.1007/s10773-009-0208-6
30 Yu J, He J S, Ma W X, Cheng Y. The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems. Chin Ann Math Ser B, 2010, 31: 361-372
https://doi.org/10.1007/s11401-009-0032-6
31 Zeng Y B. New factorization of the Kaup-Newell hierarchy. Phys D, 1994, 73: 171-188
https://doi.org/10.1016/0167-2789(94)90155-4
32 Zeng Y B. The integrable system associated with higher-order constraint. Acta Math Sinica (Chin Ser), 1995, 38: 642-652 (in Chinese)
33 Zhang Y F. Lie algebras for constructing nonlinear integrable couplings. Commun Theor Phys, 2011, 56(5): 805-812
https://doi.org/10.1088/0253-6102/56/5/03
34 Zhang Y F, Hon Y C. Some evolution hierarchies derived from self-dual Yang-Mills equations. Commun Theor Phys, 2011, 56(5): 856-872
https://doi.org/10.1088/0253-6102/56/5/12
35 Zhang Y F, Tam H, Feng B. A generalized Zakharov-Shabat equation with finite-band solutions and a soliton-equation hierarchy with an arbitrary parameter. Chaos Solitons Fractals, 2011, 44(11): 968-976
https://doi.org/10.1016/j.chaos.2011.07.014
36 Zhou R G. Lax representation, r-matrix method, and separation of variables for the Neumann-type restricted flow. J Math Phys, 1998, 39: 2848-2858
https://doi.org/10.1063/1.532424
[1] Hanyu WEI, Tiecheng XIA. Constructing super D-Kaup-Newell hierarchy and its nonlinear integrable coupling with self-consistent sources[J]. Front. Math. China, 2019, 14(6): 1353-1366.
[2] Gegenhasi,Zhaowen YAN. Discrete three-dimensional three wave interaction equation with self-consistent sources[J]. Front. Math. China, 2016, 11(6): 1501-1513.
[3] Junwei CHENG, Dajun ZHANG. Conservation laws of some lattice equations[J]. Front Math Chin, 2013, 8(5): 1001-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed