Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (3) : 523-546    https://doi.org/10.1007/s11464-015-0410-1
RESEARCH ARTICLE
Bicomplex Hermitian Clifford analysis
Lin CHEN1,Guangbin REN1,*(),Haiyan WANG2
1. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
2. School of Science, Tianjin University of Technology and Education, Tianjin 300222, China
 Download: PDF(192 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Complex Hermitian Clifford analysis emerged recently as a refinement of the theory of several complex variables, while at the same time, the theory of bicomplex numbers motivated by the bicomplex version of quantum mechanics is also under full development. This stimulates us to combine the Hermitian Clifford analysis with the theory of bicomplex number so as to set up the theory of bicomplex Hermitian Clifford analysis. In parallel with the Euclidean Clifford analysis, the bicomplex Hermitian Clifford analysis is centered around the bicomplex Hermitian Dirac operator |D:C(R4n,W4n)C(R4n,W4n), where W4n is the tensor product of three algebras, i.e., the hyperbolic quaternion B^, the bicomplex number B, and the Clifford algebra Rn. The operator D is a square root of the Laplacian in R4n, introduced by the formula D|=j=03Kj?Zj with Kjbeing the basis of B^, and ?Zj denoting the twisted Hermitian Dirac operators in the bicomplex Clifford algebra B?R0,4n whose definition involves a delicate construction of the bicomplexWitt basis. The introduction of the operator D can also overturn the prevailing opinion in the Hermitian Clifford analysis in the complex or quaternionic setting that the complex or quaternionic Hermitiean monogenic functions are described by a system of equations instead of by a single equation like classical monogenic functions which are null solutions of Dirac operator. In contrast to the Hermitian Clifford analysis in quaternionic setting, the Poisson brackets of the twisted real Clifford vectors do not vanish in general in the bicomplex setting. For the operator D, we establish the Cauchy integral formula, which generalizes the Martinelli-Bochner formula in the theory of several complex variables.

Keywords Bicomplex numbers      Hermitian Clifford analysis      Witt basis      Cauchy integral formula     
Corresponding Author(s): Guangbin REN   
Issue Date: 01 April 2015
 Cite this article:   
Lin CHEN,Guangbin REN,Haiyan WANG. Bicomplex Hermitian Clifford analysis[J]. Front. Math. China, 2015, 10(3): 523-546.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0410-1
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I3/523
1 Abreu Blaya R, Bory-Reyes J, Brackx F, De Schepper H, Sommen F. Cauchy integral formulas in quaternionic Hermitean Clifford analysis. Complex Anal Oper Theory, 2012, 6: 971-985
https://doi.org/10.1007/s11785-011-0168-8
2 Brackx F, Bure? J, De Schepper H, Eelbode D, Sommen F, Sou?ek V. Fundaments of Hermitean Clifford analysis. Part I: Complex structure. Complex Anal Oper Theory, 2007, 1: 341-365
https://doi.org/10.1007/s11785-007-0010-5
3 Brackx F, Bure? J, De Schepper H, Eelbode D, Sommen F, Sou?ek V. Fundaments of Hermitean Clifford analysis. Part II: Splitting of h-monogenic equations. Complex Var Elliptic Equ, 2007, 52: 1063-1079
https://doi.org/10.1080/17476930701466614
4 Brackx F, De Knock B, De Schepper H, Sommen F. On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis. Bull Braz Math Soc, 2009, 40: 395-416
https://doi.org/10.1007/s00574-009-0018-8
5 Brackx F, Delanghe R, Sommen F. Clifford Analysis. Boston: Pitman, 1982
6 Brackx F, Delanghe R, Sommen F. The Hermitian Clifford analysis toolbox. Adv Appl Clifford Algebr, 2008, 18: 451-487
https://doi.org/10.1007/s00006-008-0081-z
7 Catoni F, Cannata R, Zampetti P. An introduction to commutative quaternions. Adv Appl Clifford Algebr, 2006, 16(1): 1-28
https://doi.org/10.1007/s00006-006-0002-y
8 Damiano A, Eelbode D, Sabadini I. Algebraic analysis of Hermitian monogenic functions. C R Acad Sci Paris Ser I, 2008, 346: 139-142
https://doi.org/10.1016/j.crma.2007.12.009
9 Damiano A, Eelbode D, Sabadini I. Quaternionic Hermitian spinor systems and compatibility conditions. Adv Geom, 2011, 11: 169-189
https://doi.org/10.1515/advgeom.2010.045
10 Delanghe R, Sommen F, Sou?ek V. Clifford Algebra and Spinor-Valued Functions. Dordrecht: Kluwer, 1992
https://doi.org/10.1007/978-94-011-2922-0
11 Eelbode D. A Clifford algebraic framework for sp(m)-invariant differential operators. Adv Appl Clifford Algebr, 2007, 17: 635-649
https://doi.org/10.1007/s00006-007-0052-9
12 Gilbert J, Murray M. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge: Cambridge University Press, 1991
https://doi.org/10.1017/CBO9780511611582
13 Gürlebeck K, Habetha K, Spr?ssig W. Holomorphic Functions in the Plane and n-dimensional Space. Basel: Birkh?user Verlag, 2008
14 Gürlebeck K, Spr?ssig W. Quaternionic and Clifford Calculus for Physicists and Engineers. Chichester: Wiley, 1998
15 Kytmanov A. The Bochner-Martinelli Integral and Its Applications. Basel-Boston-Berlin: Birkh?user, 1995
https://doi.org/10.1007/978-3-0348-9094-6
16 Lavoie R G, Marchildon L, Rochon D. Finite-dimensional bicomplex Hilbert spaces. Adv Appl Clifford Algebr, 2011, 21: 561-581
https://doi.org/10.1007/s00006-010-0274-0
17 Mathieu J, Marchildon L, Rochon D. The bicomplex quantum Coulomb potential problem. Canad J Phys, 2013, 91(12): 1093-1100
https://doi.org/10.1139/cjp-2013-0261
18 Pe?a-Pe?a D, Sabadini I, Sommen F. Quaternionic Clifford analysis: the Hermitian setting. Complex Anal Oper Theory, 2007, 1: 97-113
https://doi.org/10.1007/s11785-006-0005-7
19 Price G B. An Introduction to Multicomplex Spaces and Functions. New York: Marcel Dekker, 1991
20 Rocha-Chávez R, Shapiro M, Sommen F. Integral theorems for functions and differential forms in Cm. In: Research Notes in Mathematics, Vol 428. Boca Raton: Chapman & Hall/CRC, 2002
21 R?nn S. Bicomplex algebra and function theory. arXiv math 0101200v1.[math.CV], 2001
22 Ryan J. Complexified Clifford analysis. Complex Var Theory Appl, 1982, 1: 119-149
https://doi.org/10.1080/17476938208814009
23 Sabadini I, Sommen F. Hermitian Clifford analysis and resolutions. Math Meth Appl Sci, 2002, 25: 1395-1413
https://doi.org/10.1002/mma.378
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed