|
|
|
Derived equivalences and Cohen-Macaulay Auslander algebras |
Shengyong PAN1,2( ), Xiaojin ZHANG3 |
1. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China 2. Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China 3. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
|
|
Abstract Let A and B be Artin R-algebras of finite Cohen-Macaulay type. Then we prove that, if A and B are standard derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived equivalent. And we show that Gorenstein projective conjecture is an invariant under standard derived equivalence between Artin R-algebras.
|
| Keywords
Standard derived equivalence
Cohen-Macaulay Auslander algebra
Gorenstein projective conjecture
|
|
Corresponding Author(s):
Shengyong PAN
|
|
Issue Date: 12 February 2015
|
|
| 1 |
M Auslander, M Bridger. Stable Module Category. Mem Amer Math Soc, 94. Providence: Amer Math Soc, 1969
|
| 2 |
M Auslander, I Reiten, S O Smalo. Representation Thoery of Artin Algebras. Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511623608
|
| 3 |
A Beligiannis. Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J Algebra, 2005, 288: 137−211
https://doi.org/10.1016/j.jalgebra.2005.02.022
|
| 4 |
A Beligiannis. On algebra of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973−2019
https://doi.org/10.1016/j.aim.2010.09.006
|
| 5 |
R O Buchweitz. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings. Preprint, 155pp (1987)
|
| 6 |
L W Christensen, H Holm. Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math Z, 2010, 265: 21−40
https://doi.org/10.1007/s00209-009-0500-4
|
| 7 |
D Happel. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Cambridge University Press, Cambridge. 1988
https://doi.org/10.1017/CBO9780511629228
|
| 8 |
D Happel. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite Dimensional Algebras. (Proc Conf at Bielefeld, 1991), 389−404. Progress in Math, Vol 95. Basel: Birkhäuser, 1991
|
| 9 |
D Happel. Homological Conjectures in Representation Theory of Finite Dimensional Algebras. Sherbrook Lecture Notes Series, 1991
|
| 10 |
W Hu, C Xi. Derived equivalences and stable equivalences of Morita type, I. Nagoya Math J, 2010, 200: 107−152
|
| 11 |
D A Jorgensen, L M Şega. Independence of the total reflexivity conditions for modules. Algebr Represent Theory, 2006, 9: 217−226
https://doi.org/10.1007/s10468-005-0559-5
|
| 12 |
Y Kato. On derived equivalent coherent rings. Comm Algebra, 2002, 30: 4437−4454
https://doi.org/10.1081/AGB-120013331
|
| 13 |
R Luo, Z Huang. When are torsionless modules projective? J Algebra 2008, 320: 2156−2164
https://doi.org/10.1016/j.jalgebra.2008.04.027
|
| 14 |
A Neeman. Triangulated Categories. Ann of Math Stud, 148. Princeton: Princeton University Press, 2001
https://doi.org/10.1515/9781400837212
|
| 15 |
S Pan. Derived equivalences for Cohen-Macaulay Auslander algebras. J Pure Appl Algebra, 2012, 216: 355−363
https://doi.org/10.1016/j.jpaa.2011.06.017
|
| 16 |
S Pan. Generalized Auslander-Reiten conjecture and derived equivalences. Comm Algebra, 2013, 41: 3695−3704
https://doi.org/10.1080/00927872.2012.674591
|
| 17 |
S Pan. Derived equivalences for Φ-Cohen-Macaulay Auslander−Yoneda algebras. Algebr Represent Theory, 2014, 17: 885−903
https://doi.org/10.1007/s10468-013-9423-1
|
| 18 |
S Pan, C Xi. Finiteness of finitistic dimension is invariant under derived equivalences. J Algebra, 2009, 322: 21−24
https://doi.org/10.1016/j.jalgebra.2009.03.017
|
| 19 |
J Rickard. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436−456
https://doi.org/10.1112/jlms/s2-39.3.436
|
| 20 |
J Rickard. Derived equivalences as derived functors. J Lond Math Soc, 1991, 43: 37−48
https://doi.org/10.1112/jlms/s2-43.1.37
|
| 21 |
X Zhang. A note on Gorenstein projective conjecture II. Preprint, 2012,
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|