Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (2) : 323-338    https://doi.org/10.1007/s11464-015-0437-3
RESEARCH ARTICLE
Derived equivalences and Cohen-Macaulay Auslander algebras
Shengyong PAN1,2(), Xiaojin ZHANG3
1. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
2. Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China
3. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
 Download: PDF(168 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let A and B be Artin R-algebras of finite Cohen-Macaulay type. Then we prove that, if A and B are standard derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived equivalent. And we show that Gorenstein projective conjecture is an invariant under standard derived equivalence between Artin R-algebras.

Keywords Standard derived equivalence      Cohen-Macaulay Auslander algebra      Gorenstein projective conjecture     
Corresponding Author(s): Shengyong PAN   
Issue Date: 12 February 2015
 Cite this article:   
Shengyong PAN,Xiaojin ZHANG. Derived equivalences and Cohen-Macaulay Auslander algebras[J]. Front. Math. China, 2015, 10(2): 323-338.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0437-3
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I2/323
1 M Auslander, M Bridger. Stable Module Category. Mem Amer Math Soc, 94. Providence: Amer Math Soc, 1969
2 M Auslander, I Reiten, S O Smalo. Representation Thoery of Artin Algebras. Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511623608
3 A Beligiannis. Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J Algebra, 2005, 288: 137−211
https://doi.org/10.1016/j.jalgebra.2005.02.022
4 A Beligiannis. On algebra of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973−2019
https://doi.org/10.1016/j.aim.2010.09.006
5 R O Buchweitz. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings. Preprint, 155pp (1987)
6 L W Christensen, H Holm. Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math Z, 2010, 265: 21−40
https://doi.org/10.1007/s00209-009-0500-4
7 D Happel. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Cambridge University Press, Cambridge. 1988
https://doi.org/10.1017/CBO9780511629228
8 D Happel. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite Dimensional Algebras. (Proc Conf at Bielefeld, 1991), 389−404. Progress in Math, Vol 95. Basel: Birkhäuser, 1991
9 D Happel. Homological Conjectures in Representation Theory of Finite Dimensional Algebras. Sherbrook Lecture Notes Series, 1991
10 W Hu, C Xi. Derived equivalences and stable equivalences of Morita type, I. Nagoya Math J, 2010, 200: 107−152
11 D A Jorgensen, L M Şega. Independence of the total reflexivity conditions for modules. Algebr Represent Theory, 2006, 9: 217−226
https://doi.org/10.1007/s10468-005-0559-5
12 Y Kato. On derived equivalent coherent rings. Comm Algebra, 2002, 30: 4437−4454
https://doi.org/10.1081/AGB-120013331
13 R Luo, Z Huang. When are torsionless modules projective? J Algebra 2008, 320: 2156−2164
https://doi.org/10.1016/j.jalgebra.2008.04.027
14 A Neeman. Triangulated Categories. Ann of Math Stud, 148. Princeton: Princeton University Press, 2001
https://doi.org/10.1515/9781400837212
15 S Pan. Derived equivalences for Cohen-Macaulay Auslander algebras. J Pure Appl Algebra, 2012, 216: 355−363
https://doi.org/10.1016/j.jpaa.2011.06.017
16 S Pan. Generalized Auslander-Reiten conjecture and derived equivalences. Comm Algebra, 2013, 41: 3695−3704
https://doi.org/10.1080/00927872.2012.674591
17 S Pan. Derived equivalences for Φ-Cohen-Macaulay Auslander−Yoneda algebras. Algebr Represent Theory, 2014, 17: 885−903
https://doi.org/10.1007/s10468-013-9423-1
18 S Pan, C Xi. Finiteness of finitistic dimension is invariant under derived equivalences. J Algebra, 2009, 322: 21−24
https://doi.org/10.1016/j.jalgebra.2009.03.017
19 J Rickard. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436−456
https://doi.org/10.1112/jlms/s2-39.3.436
20 J Rickard. Derived equivalences as derived functors. J Lond Math Soc, 1991, 43: 37−48
https://doi.org/10.1112/jlms/s2-43.1.37
21 X Zhang. A note on Gorenstein projective conjecture II. Preprint, 2012,
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed