Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1389-1400    https://doi.org/10.1007/s11464-015-0445-3
RESEARCH ARTICLE
Utility indifference valuation of corporate bond with rating migration risk
Jin LIANG,Xudan ZHANG(),Yuejuan ZHAO
Department of Mathematics, Tongji University, Shanghai 200092, China
 Download: PDF(311 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A pricing model for a corporate bond with rating migration risk is established in this article. With the technology of utility-indifference valuation under the Markov-modulated framework, we analyze the price of a multi-rating bond and obtain closed formulae in a three-rating case. Based on the pricing formulae, the impacts of the parameters on the indifference price are analyzed and some reasonable financial explanations are provided as well.

Keywords Utility indifference price      credit rating migration      HJB equation      Markov-modulated     
Corresponding Author(s): Xudan ZHANG   
Issue Date: 12 October 2015
 Cite this article:   
Jin LIANG,Xudan ZHANG,Yuejuan ZHAO. Utility indifference valuation of corporate bond with rating migration risk[J]. Front. Math. China, 2015, 10(6): 1389-1400.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0445-3
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1389
1 Bäuerle N, Rieder U. Portfolio optimization with Markov-modulated stock prices and interest rates. Automatic Control, 2004, 49(3): 442−447
https://doi.org/10.1109/TAC.2004.824471
2 Bronson R. Matrix Methods: An Introduction. New York: Academic Press, 1991
3 Davis M H A, Panas V, Zarphopoulou T. European option pricing with transaction costs. Control Optim, 1993, 31: 470−493
https://doi.org/10.1137/0331022
4 Duffe D, Singleton K J. Modeling term structures of defaultable bonds. Rev Financial Stud, 1999, 12: 687−720
https://doi.org/10.1093/rfs/12.4.687
5 Elliott R J, Siu T K. On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy. Ann Oper Res, 2010, 176(1): 271−291
https://doi.org/10.1007/s10479-008-0448-5
6 Henderson V, Hobson D. Utility Indifference Pricing: An Overview Indifference Pricing. Princeton: Princeton University Press, 2004
7 Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs. Rev Futures Markets, 1989, 8: 222−239
8 Jarrow R, Turnbull S. Pricing derivatives on financial securities subject to credit risk. J Finance, 1995, 50: 53−86
https://doi.org/10.1111/j.1540-6261.1995.tb05167.x
9 Lando D. On Cox processes and credit-risky securities. Rev Derivatives Res, 1998, 2: 99−120
https://doi.org/10.1007/BF01531332
10 Rieder U, Bäuerle N. Portfolio optimization with unobservable Markov-modulated drift process. J Appl Probab, 2005, 42(2): 362−378
https://doi.org/10.1239/jap/1118777176
11 Sircar R, Zariphopoulou T. Utility valuation of credit derivatives: single and two-name cases. Adv Math Finance, 2007: 279−301
12 Sircar R, Zariphopoulou T. Utility valuation of multi-name credit derivatives and application to CDOs. Quant Finance, 2010, 10(2): 195−208
https://doi.org/10.1080/14697680902744737
13 Sotomayor L R, Cadenillas A. Explicit solutions of consumption-investment problems in financial markets with regime switching. Math Finance, 2009, 19(2): 251−279
https://doi.org/10.1111/j.1467-9965.2009.00366.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed