|
|
|
Hopf *-algebra structures on H(1, q) |
Hassen Suleman Esmael MOHAMMED1,Tongtong LI2,Huixiang CHEN1,*( ) |
1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China 2. Jiangyan No. 2 High School, Jiangyan 225500, China |
|
|
|
|
Abstract We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over ?. It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.
|
| Keywords
*-Structure
antilinear map
Hopf *-algebra
|
|
Corresponding Author(s):
Huixiang CHEN
|
|
Issue Date: 12 October 2015
|
|
| 1 |
Chen H X. A class of noncommutative and noncocommutative Hopf algebras—the quantum version. Comm Algebra, 1999, 27: 5011−5023
https://doi.org/10.1080/00927879908826745
|
| 2 |
Chen H X. Irreducible representations of a class of quantum doubles. J Algebra, 2000, 225: 391−409
https://doi.org/10.1006/jabr.1999.8135
|
| 3 |
Chen H X. Finite-dimensional representations of a quantum double. J Algebra, 2002, 251: 751−789
https://doi.org/10.1006/jabr.2002.9144
|
| 4 |
Chen H X. Representations of a class of Drinfeld’s doubles. Comm Algebra, 2005, 33: 2809−2825
https://doi.org/10.1081/AGB-200065383
|
| 5 |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0783-2
|
| 6 |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
https://doi.org/10.1017/CBO9780511613104
|
| 7 |
Masuda T, Mimachi K, Nagakami Y, Noumi M, Saburi Y, Ueno K. Unitary representations of the quantum group SUq(1.1): Structure of the dual space of Uq(sl(2)). Lett Math Phys, 1990, 19: 187−194
https://doi.org/10.1007/BF01039311
|
| 8 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
|
| 9 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
| 10 |
Wang Z, Chen H X. Generic modules over a class of Drinfeld’s quantum doubles. Comm Algebra, 2008, 36: 3730−3749
https://doi.org/10.1080/00927870802158093
|
| 11 |
Woronowicz S L. Compact matrix pseudo-groups. Comm Math Phys, 1987, 111: 613−665
https://doi.org/10.1007/BF01219077
|
| 12 |
Woronowicz S L. Twisted SU(N) group. An example of non-commutative differential calculus. Publ Res Inst Math Sci, 1987, 23: 117−181
https://doi.org/10.2977/prims/1195176848
|
| 13 |
Woronowicz S L. Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU(N) groups. Invent Math, 1988, 93: 35−76
https://doi.org/10.1007/BF01393687
|
| 14 |
Zhang Y, Wu F, Liu L, Chen H X. Grothendieck groups of a class of quantum doubles. Algebra Colloq, 2008, 15: 431−448
https://doi.org/10.1142/S1005386708000412
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|