Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1415-1432    https://doi.org/10.1007/s11464-015-0454-2
RESEARCH ARTICLE
Hopf *-algebra structures on H(1, q)
Hassen Suleman Esmael MOHAMMED1,Tongtong LI2,Huixiang CHEN1,*()
1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
2. Jiangyan No. 2 High School, Jiangyan 225500, China
 Download: PDF(154 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the Hopf *-algebra structures on the Hopf algebra H(1, q) over ?. It is shown that H(1, q) is a Hopf *-algebra if and only if |q| = 1 or q is a real number. Then the Hopf *-algebra structures on H(1, q) are classified up to the equivalence of Hopf *-algebra structures.

Keywords *-Structure      antilinear map      Hopf *-algebra     
Corresponding Author(s): Huixiang CHEN   
Issue Date: 12 October 2015
 Cite this article:   
Hassen Suleman Esmael MOHAMMED,Tongtong LI,Huixiang CHEN. Hopf *-algebra structures on H(1, q)[J]. Front. Math. China, 2015, 10(6): 1415-1432.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0454-2
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1415
1 Chen H X. A class of noncommutative and noncocommutative Hopf algebras—the quantum version. Comm Algebra, 1999, 27: 5011−5023
https://doi.org/10.1080/00927879908826745
2 Chen H X. Irreducible representations of a class of quantum doubles. J Algebra, 2000, 225: 391−409
https://doi.org/10.1006/jabr.1999.8135
3 Chen H X. Finite-dimensional representations of a quantum double. J Algebra, 2002, 251: 751−789
https://doi.org/10.1006/jabr.2002.9144
4 Chen H X. Representations of a class of Drinfeld’s doubles. Comm Algebra, 2005, 33: 2809−2825
https://doi.org/10.1081/AGB-200065383
5 Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0783-2
6 Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
https://doi.org/10.1017/CBO9780511613104
7 Masuda T, Mimachi K, Nagakami Y, Noumi M, Saburi Y, Ueno K. Unitary representations of the quantum group SUq(1.1): Structure of the dual space of Uq(sl(2)). Lett Math Phys, 1990, 19: 187−194
https://doi.org/10.1007/BF01039311
8 Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
9 Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
10 Wang Z, Chen H X. Generic modules over a class of Drinfeld’s quantum doubles. Comm Algebra, 2008, 36: 3730−3749
https://doi.org/10.1080/00927870802158093
11 Woronowicz S L. Compact matrix pseudo-groups. Comm Math Phys, 1987, 111: 613−665
https://doi.org/10.1007/BF01219077
12 Woronowicz S L. Twisted SU(N) group. An example of non-commutative differential calculus. Publ Res Inst Math Sci, 1987, 23: 117−181
https://doi.org/10.2977/prims/1195176848
13 Woronowicz S L. Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU(N) groups. Invent Math, 1988, 93: 35−76
https://doi.org/10.1007/BF01393687
14 Zhang Y, Wu F, Liu L, Chen H X. Grothendieck groups of a class of quantum doubles. Algebra Colloq, 2008, 15: 431−448
https://doi.org/10.1142/S1005386708000412
[1] Ming LIU,Xia ZHANG. Characterization of compact quantum group[J]. Front. Math. China, 2014, 9(2): 321-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed