Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1263-1281    https://doi.org/10.1007/s11464-015-0460-4
RESEARCH ARTICLE
Representations and categorical realization of Hom-quasi-Hopf algebras
Yongsheng CHENG1,*(),Xiufu ZHANG2
1. School of Mathematics and Statistics and Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, China
2. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
 Download: PDF(175 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We give a monoidal category approach to Hom-coassociative coalgebra by imposing the Hom-coassociative law up to some isomorphisms on the comultiplication map and requiring that these isomorphisms satisfy the copentagon axiom and obtain a Hom-coassociative 2-coalgebra, which is a 2- category. Second, we characterize Hom-bialgebras in terms of their categories of modules. Finally, we give a categorical realization of Hom-quasi-Hopf algebras using Hom-coassociative 2-coalgebra.

Keywords Monoidal category      Hom-coassociative 2-coalgebra      Hom-quasi-Hopf algebra     
Corresponding Author(s): Yongsheng CHENG   
Issue Date: 12 October 2015
 Cite this article:   
Yongsheng CHENG,Xiufu ZHANG. Representations and categorical realization of Hom-quasi-Hopf algebras[J]. Front. Math. China, 2015, 10(6): 1263-1281.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0460-4
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1263
1 Baez J, Dolan J. Higher-dimensional algebra and topological quantum field theory. J Math Phys, 1995, 36: 6073−6105
https://doi.org/10.1063/1.531236
2 Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216−2240
https://doi.org/10.1080/00927872.2010.490800
3 Chang W, Wang Z, Wu K, Yang Z. Categorification and quasi-Hopf algebras. Commun Theor Phys, 2011, 56: 207−210
https://doi.org/10.1088/0253-6102/56/2/02
4 Cheng Y, Su Y. (Co)Homology and universal central extension of Hom-Leibniz algebras. Acta Math Sin (Engl Ser), 2011, 27(5): 813−830
5 Cheng Y, Yang H. Low-dimensional cohomology of the q-deformed Heisenberg-Virasoro algebra of Hom-type. Front Math China, 2010, 5(4): 607−622
https://doi.org/10.1007/s11464-010-0063-z
6 Crane L, Frenkel I. Four-dimensional topological quantum field theory, Hopf categories and the canonical bases. J Math Phys, 1994, 35: 5136−5154
https://doi.org/10.1063/1.530746
7 Drinfeld V. Quasi-Hopf algebras. Leningrad Math J, 1990, 1: 1419−1457
8 Elhamdadi M, Makhlouf A. Hom-quasi-bialgebra. arXiv: 1209.0988v1
9 Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann Math, 2005, 162(2): 581−642
https://doi.org/10.4007/annals.2005.162.581
10 Frenkel I, Khovanov M, Stroppel C. A categorification of finite-dimensional irreducible representations of quantum sl2 and their tensor products. Selecta Math (N S), 2006, 12: 379−431
https://doi.org/10.1007/s00029-007-0031-y
11 Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314−361
https://doi.org/10.1016/j.jalgebra.2005.07.036
12 Huang H, Liu G, Ye Y. Quivers, quasi-quantum groups and finite tensor categories. Comm Math Phys, 2011, 303: 595−612
https://doi.org/10.1007/s00220-011-1229-6
13 Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0783-2
14 Larsson D, Silvestrov S. Quasi-Hom-Lie algebras, central extensions and 2- cocycle-like identities. J Algebra, 2005, 288: 321−344
https://doi.org/10.1016/j.jalgebra.2005.02.032
15 MacLane S. Categories for a Working Mathematician. 2nd ed. Grad Texts in Math, Vol 5. Berlin: Springer, 1998
16 Majid S. Cross product quantisation, nonabelian cohomology and twisting of Hopf algebras. In: Doebner H, Dobrev V, Ushveridze A, eds. Generalized Symmetries in Physics. Singapore: World Sci, 1994, 13−41
17 Makhlouf A, Silvestrov S. Hom-algebra and Hom-coalgebras. J Algebra Appl, 2010, 9(4): 553−589
https://doi.org/10.1142/S0219498810004117
18 Sheng Y. Representation of Hom-Lie algebra. Algebr Represent Theory, 2012, 15(6): 1081−1098
https://doi.org/10.1007/s10468-011-9280-8
19 Yau D. Hom-algebras and homology. J Lie Theory, 2009, 19: 409−421
20 Yau D. Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular b<?Pub Caret?>ialgebras. J Phys A: Math Theory, 2009, 42: 165202
https://doi.org/10.1088/1751-8113/42/16/165202
[1] Haijun CAO. Weak rigid monoidal category[J]. Front. Math. China, 2017, 12(1): 19-33.
[2] Meiling ZHU, Huixiang CHEN, Libin LI. Coquasitriangular Hopf group coalgebras and braided monoidal categories[J]. Front Math Chin, 2011, 6(5): 1009-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed