|
|
|
Minimizers of anisotropic Rudin-Osher-Fatemi models |
Ruiling JIA,Meiyue JIANG( ) |
| LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China |
|
|
|
|
Abstract We give the explicit formulas of the minimizers of the anisotropic Rudin-Osher-Fatemi models E1φ(u)=∫Ωφo(Du)dx+λ∫Ω|u−f|dx, u∈BV(Ω),E2φ(u)=∫Ωφo(Du)dx+λ∫Ω(u−f)2dx, u∈BV(Ω), where Ω⊂?2 is a domain, φo is an anisotropic norm on ?2, and f is a solution of the anisotropic 1-Laplacian equations.
|
| Keywords
Anisotropic Rudin-Osher-Fatemi (ROF) model
Euler-Lagrange equation
φ-curvature')" href="#">φ-curvature
|
|
Corresponding Author(s):
Meiyue JIANG
|
|
Issue Date: 12 October 2015
|
|
| 1 |
Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process, 1997, 45: 913−917
https://doi.org/10.1109/78.564179
|
| 2 |
Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Oxford University Press, 2000
|
| 3 |
Andreu-Vaillo F, Ballester C, Caselles V, Mazón J M. Minimizing total variation flow. Differential Integral Equations, 2001, 14: 321−360
|
| 4 |
Andreu-Vaillo F, Caselles V, Mazón J M. Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Basel-Boston-Berlin: Birkhäuser, 2004
https://doi.org/10.1007/978-3-0348-7928-6
|
| 5 |
Bellettini G. Anisotropic and crystalline mean curvature flow. In: Bao D, Bryant R L, Chern S S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, 50. Cambridge: Cambridge Press, 2004, 49−82
|
| 6 |
Bellettini G, Caselles V, Novaga M. The total variation flow in RN. J Differential Equations, 2002, 184: 475−525
https://doi.org/10.1006/jdeq.2001.4150
|
| 7 |
Chambolle A, Lions P L. Image recovery via tota<?Pub Caret?>l variation minimization and related problems. Numer Math, 1997, 76: 167−188
https://doi.org/10.1007/s002110050258
|
| 8 |
Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM J Appl Math, 2005, 65: 1817−1837
https://doi.org/10.1137/040604297
|
| 9 |
Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of denoising and segmentation models. SIAM J Appl Math, 2006, 66: 1632−1648
https://doi.org/10.1137/040615286
|
| 10 |
Chan T F, Esedoglu S, Park F, Yip A. Total variation image restoration: overview and recent developments. In: Paragios N, Chen Y M, Faugeras O, eds. Handbook of Mathematical Models in Computer Vision. New York: Springer, 2006, 17−31
https://doi.org/10.1007/0-387-28831-7_2
|
| 11 |
Chang K-C. The spectrum of the 1-Laplace operator. Commun Contemp Math, 2009, 11: 865−894
https://doi.org/10.1142/S0219199709003570
|
| 12 |
Esedoglu S, Osher S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Comm Pure Appl Math, 2004, 57: 1609−1626
https://doi.org/10.1002/cpa.20045
|
| 13 |
Giusti E. On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions. Invent Math, 1978, 46: 111−137
https://doi.org/10.1007/BF01393250
|
| 14 |
Jiang M-Y. Eigenfunctions of 1-Laplacian and Minimizers of the Rudin-Osher-Fatemi Functionals. Research Report, No 49. Institute of Mathematics Peking University, 2012
|
| 15 |
Jiang M-Y. Minimizers of the Rudin-Osher-Fatemi functionals in bounded domains. Adv Nonlinear Stud, 2014, 14: 31−46
|
| 16 |
Kawohl B, Schuricht F. Dirichlet problems for the 1-Laplacian operator, including the eigenvalue problem. Commun Contemp Math, 2007, 9: 515−543
https://doi.org/10.1142/S0219199707002514
|
| 17 |
Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Providence: Amer Math Soc, 2001
|
| 18 |
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259−268
https://doi.org/10.1016/0167-2789(92)90242-F
|
| 19 |
Strong D, Chan T F. Exact solutions to total variation regularization problems. UCLA CAM Report, 1996
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|