Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (6) : 1473-1481    https://doi.org/10.1007/s11464-015-0498-3
RESEARCH ARTICLE
Nil-Coxeter algebras and nil-Ariki-Koike algebras
Guiyu YANG()
School of Science, Shandong University of Technology, Zibo 255049, China
 Download: PDF(123 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the properties of nil-Coxeter algebras and nil-Ariki-Koike algebras. To be precise, from the view of standardly based algebras introduced by J. Du, H. Rui [Trans. Amer. Math. Soc, 1998, 350: 3207–3235], we give a description of simple modules of nil-Coxeter algebras and nil-Ariki-Koike algebras. Then we determine the representation type of nil-Coxeter algebras and nil-Ariki-Koike algebras. We also give a description of the center of nil-Ariki-Koike algebras.

Keywords nil-Coxeter algebras      nil-Ariki-Koike algebras     
Corresponding Author(s): Guiyu YANG   
Issue Date: 12 October 2015
 Cite this article:   
Guiyu YANG. Nil-Coxeter algebras and nil-Ariki-Koike algebras[J]. Front. Math. China, 2015, 10(6): 1473-1481.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0498-3
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I6/1473
1 Ariki S. Hecke algebras of classical type and their representation type. Proc Lond Math Soc, 2005, 91: 355−413
https://doi.org/10.1112/S0024611505015236
2 Ariki S, Koike K. A Hecke algebra of (?/r?) ?Sn and construction of its irreducible representations. Adv Math, 1994, 106: 216−243
3 Bernstein J N, Gelfand I M, Gelfand S I. Schubert cells and cohomology of the spaces G/P. Russian Math Surveys, 1973, 28: 1−26
https://doi.org/10.1070/RM1973v028n03ABEH001557
4 Brichard J. The center of the Nilcoxeter and 0-Hecke algebras. arXiv: 0811.2590
5 Crawley-Boevey W. Tameness of biserial algebras. Arch Math, 1995, 65: 399−407
https://doi.org/10.1007/BF01198070
6 Drozd J A. Tame and wild matrix problems. In: Dlab V, Gabriel P, eds. Representation Theory II. Lecture Notes in Math, Vol 832. Berlin-Heidelberg-New York: Springer, 1980, 242−258
https://doi.org/10.1007/BFb0088467
7 Du J, Rui H. Based algebras and standard bases for quasi-hereditary algebras. Trans Amer Math Soc, 1998, 350: 3207−3235
https://doi.org/10.1090/S0002-9947-98-02305-8
8 Erdmann K. Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Math, Vol 1428. Berlin: Springer-Verlag, 1990
9 Fomin S, Stanley R P. Schubert polynomials and the nilCoxeter algebra. Adv Math, 1994, 103: 196−207
https://doi.org/10.1006/aima.1994.1009
10 Graham J, Lehrer G. Cellular algebras. Invent Math, 1996, 123: 1−34
https://doi.org/10.1007/BF01232365
11 Grojnowski I, Vazirani M. Strong multiplicity one theorems for affine Hecke algebras of type A. Transform Groups, 2001, 6: 143−155
https://doi.org/10.1007/BF01597133
12 Khovanov M. Nilcoxeter algebras categorify the Weyl algebra. Comm Algebra, 2001, 29: 5033−5052
https://doi.org/10.1081/AGB-100106800
13 Khovanov M, Lauda A D. A diagrammatic approach to categorification of quantum groups I. Represent Theory, 2009, 13: 309−347
https://doi.org/10.1090/S1088-4165-09-00346-X
14 Lenzing H. Invariance of tameness under stable equivalence: Krause’s theorem. In: Krause H, Ringel C M, eds. Infinite Length Modules. Trends in Mathematics. Boston: Birkhäuser, 2000, 405−418
https://doi.org/10.1007/978-3-0348-8426-6_21
15 Rouquier R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq, 2012, 19: 359−410
https://doi.org/10.1142/S1005386712000247
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed