|
|
|
Nil-Coxeter algebras and nil-Ariki-Koike algebras |
Guiyu YANG( ) |
| School of Science, Shandong University of Technology, Zibo 255049, China |
|
|
|
|
Abstract We investigate the properties of nil-Coxeter algebras and nil-Ariki-Koike algebras. To be precise, from the view of standardly based algebras introduced by J. Du, H. Rui [Trans. Amer. Math. Soc, 1998, 350: 3207–3235], we give a description of simple modules of nil-Coxeter algebras and nil-Ariki-Koike algebras. Then we determine the representation type of nil-Coxeter algebras and nil-Ariki-Koike algebras. We also give a description of the center of nil-Ariki-Koike algebras.
|
| Keywords
nil-Coxeter algebras
nil-Ariki-Koike algebras
|
|
Corresponding Author(s):
Guiyu YANG
|
|
Issue Date: 12 October 2015
|
|
| 1 |
Ariki S. Hecke algebras of classical type and their representation type. Proc Lond Math Soc, 2005, 91: 355−413
https://doi.org/10.1112/S0024611505015236
|
| 2 |
Ariki S, Koike K. A Hecke algebra of (?/r?) ?Sn and construction of its irreducible representations. Adv Math, 1994, 106: 216−243
|
| 3 |
Bernstein J N, Gelfand I M, Gelfand S I. Schubert cells and cohomology of the spaces G/P. Russian Math Surveys, 1973, 28: 1−26
https://doi.org/10.1070/RM1973v028n03ABEH001557
|
| 4 |
Brichard J. The center of the Nilcoxeter and 0-Hecke algebras. arXiv: 0811.2590
|
| 5 |
Crawley-Boevey W. Tameness of biserial algebras. Arch Math, 1995, 65: 399−407
https://doi.org/10.1007/BF01198070
|
| 6 |
Drozd J A. Tame and wild matrix problems. In: Dlab V, Gabriel P, eds. Representation Theory II. Lecture Notes in Math, Vol 832. Berlin-Heidelberg-New York: Springer, 1980, 242−258
https://doi.org/10.1007/BFb0088467
|
| 7 |
Du J, Rui H. Based algebras and standard bases for quasi-hereditary algebras. Trans Amer Math Soc, 1998, 350: 3207−3235
https://doi.org/10.1090/S0002-9947-98-02305-8
|
| 8 |
Erdmann K. Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Math, Vol 1428. Berlin: Springer-Verlag, 1990
|
| 9 |
Fomin S, Stanley R P. Schubert polynomials and the nilCoxeter algebra. Adv Math, 1994, 103: 196−207
https://doi.org/10.1006/aima.1994.1009
|
| 10 |
Graham J, Lehrer G. Cellular algebras. Invent Math, 1996, 123: 1−34
https://doi.org/10.1007/BF01232365
|
| 11 |
Grojnowski I, Vazirani M. Strong multiplicity one theorems for affine Hecke algebras of type A. Transform Groups, 2001, 6: 143−155
https://doi.org/10.1007/BF01597133
|
| 12 |
Khovanov M. Nilcoxeter algebras categorify the Weyl algebra. Comm Algebra, 2001, 29: 5033−5052
https://doi.org/10.1081/AGB-100106800
|
| 13 |
Khovanov M, Lauda A D. A diagrammatic approach to categorification of quantum groups I. Represent Theory, 2009, 13: 309−347
https://doi.org/10.1090/S1088-4165-09-00346-X
|
| 14 |
Lenzing H. Invariance of tameness under stable equivalence: Krause’s theorem. In: Krause H, Ringel C M, eds. Infinite Length Modules. Trends in Mathematics. Boston: Birkhäuser, 2000, 405−418
https://doi.org/10.1007/978-3-0348-8426-6_21
|
| 15 |
Rouquier R. Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq, 2012, 19: 359−410
https://doi.org/10.1142/S1005386712000247
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|