Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (6) : 1625-1643    https://doi.org/10.1007/s11464-016-0504-9
RESEARCH ARTICLE
Numerical simulations for G-Brownian motion
Jie YANG,Weidong ZHAO()
School of Mathematics & Finance Institute, Shandong University, Jinan 250100, China
 Download: PDF(479 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is concerned with numerical simulations for the GBrownian motion (defined by S. Peng in Stochastic Analysis and Applications, 2007, 541–567). By the definition of the G-normal distribution, we first show that the G-Brownian motions can be simulated by solving a certain kind of Hamilton-Jacobi-Bellman (HJB) equations. Then, some finite difference methods are designed for the corresponding HJB equations. Numerical simulation results of the G-normal distribution, the G-Brownian motion, and the corresponding quadratic variation process are provided, which characterize basic properties of the G-Brownian motion. We believe that the algorithms in this work serve as a fundamental tool for future studies, e.g., for solving stochastic differential equations (SDEs)/stochastic partial differential equations (SPDEs) driven by the G-Brownian motions.

Keywords Nonlinear expectation      G-Brownian motion      G-normal distribution      Hamilton-Jacobi-Bellman (HJB) equation     
Corresponding Author(s): Weidong ZHAO   
Issue Date: 18 October 2016
 Cite this article:   
Jie YANG,Weidong ZHAO. Numerical simulations for G-Brownian motion[J]. Front. Math. China, 2016, 11(6): 1625-1643.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0504-9
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I6/1625
1 Artzner P, Delbaen F, Eber J M, Heath D. Coherent measures of risk. Math Finance, 1999, 9: 203–228
https://doi.org/10.1111/1467-9965.00068
2 Avellaneda M, Levy A, Paras A. Pricing and hedging derivative securities in markets with uncertain volatilities. Appl Math Finance, 1995, 2: 73–88
https://doi.org/10.1080/13504869500000005
3 Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal, 2011, 34: 139–161
https://doi.org/10.1007/s11118-010-9185-x
4 Einstein A. Investigation on the theory of the Brownian movement (originally in German). Annalen der Physik, 1905, 17: 549–560
https://doi.org/10.1002/andp.19053220806
5 Fahim A, Touzi N, Warin X. A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann Appl Probab, 2011, 4: 1322–1364
https://doi.org/10.1214/10-AAP723
6 Gao F. Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2009, 119: 3356–3382
https://doi.org/10.1016/j.spa.2009.05.010
7 Guo W, Zhang J, Zhuo J. A monotone scheme for high dimensional fully nonlinear PDEs. Ann Appl Probab (to appear), arXiv: 1212.0466
https://doi.org/10.1214/14-aap1030
8 Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 2001, 43(3): 525–546
https://doi.org/10.1137/S0036144500378302
9 Holmes M. Introduction to Numerical Methods in Differential Equations. Berlin: Springer-Verlag, 2007
https://doi.org/10.1007/978-0-387-68121-4
10 Hu M, Ji S, Peng S, Song Y. Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process Appl, 2014, 124: 759–784
https://doi.org/10.1016/j.spa.2013.09.010
11 Hu M, Ji S, Peng S, Song Y. Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Process Appl, 2014, 124: 1170–1195
https://doi.org/10.1016/j.spa.2013.10.009
12 Hu M, Peng S. On the representation theorem of G-expectation and paths of G-Brownian motion. Acta Math Appl Sin Engl Ser, 2009, 25(3): 539–546
https://doi.org/10.1007/s10255-008-8831-1
13 Kloeden P, Platen E. Numerical Solution of Stochastic Differential Equations. Berlin: Springer-Verlag, 1999
14 Li X, Peng S. Stopping times and related Itô calculus with G-Brownian motion. Stochastic Process Appl, 2011, 121: 1492–1508
https://doi.org/10.1016/j.spa.2011.03.009
15 Lin Y. Stochastic differential equations driven by G-Brownian motion with reflecting boundary conditions. Electron J Probab, 2013, 18(9): 1–23
https://doi.org/10.1214/ejp.v18-2566
16 Peng S. G-expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In: Stochastic Analysis and Applications. Berlin: Springer, 2007, 541–567
https://doi.org/10.1007/978-3-540-70847-6_25
17 Peng S. G-Brownian motion and dynamic risk measure under volatility uncertainty. arXiv: 0711.2834v1 [math.PR], 2007
18 Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process Appl, 2008, 118: 2223–2253
https://doi.org/10.1016/j.spa.2007.10.015
19 Peng S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009, 52(7): 1391–1411
https://doi.org/10.1007/s11425-009-0121-8
20 Peng S. Nonlinear expectations and stochastic calculus under uncertainty—with robust central limit theorem and G-Brownian motion. arXiv: 1002.4546v1 [math.PR], 2010
21 Rüdiger S. Tools for Computational Finance. 2nd ed. Berlin: Springer-Verlag, 2002
22 Soner M H, Touzi N, Zhang J. Martingale representation theorem under G-expectation. Stochastic Process Appl, 2011, 121: 265–287
https://doi.org/10.1016/j.spa.2010.10.006
23 Song Y. Some properties on G-evaluation and its applications to G-martingale decomposition. Sci China A, 2011, 54(2): 287–300
https://doi.org/10.1007/s11425-010-4162-9
24 Tan X. Discrete-time probabilistic approximation of path-dependent stochastic control problems. Ann Appl Probab, 2014, 24(5): 1803–1834
https://doi.org/10.1214/13-AAP963
25 Xu J, Zhang B. Martingale characterization of G-Brownian motion. Stochastic Process Appl, 2009, 119: 232–248
https://doi.org/10.1016/j.spa.2008.02.001
26 Zhang D, Chen Z. Exponential stability for stochastic differential equation driven by G-Brownian motion. Appl Math Lett, 2012, 25: 1906–1910
https://doi.org/10.1016/j.aml.2012.02.063
27 Zhao W, Fu Y, Zhou T. New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM J Sci Comput, 2014, 36(4): A1731–1751
https://doi.org/10.1137/130941274
[1] BAI Lihua, GUO Junyi. Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach[J]. Front. Math. China, 2007, 2(4): 527-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed