Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (2) : 309-321    https://doi.org/10.1007/s11464-016-0514-2
RESEARCH ARTICLE
Geometric characterizations for variational minimizing solutions of charged 3-body problems
Wentian KUANG1,Yiming LONG1,2,*()
1. Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
2. Key Laboratory of Pure Mathematics and Combinatorics of the Ministry of Education, Nankai University, Tianjin 300071, China
 Download: PDF(142 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the charged 3-body problem with the potential function being (-α)-homogeneous on the mutual distances of any two particles via the variational method and try to find the geometric characterizations of the minimizers. We prove that if the charged 3-body problem admits a triangular central configuration, then the variational minimizing solutions of the problem in the π2-antiperiodic function space are exactly defined by the circular motions of this triangular central configuration.

Keywords Charged 3-body problem      variational minimizer      geometric characterization     
Corresponding Author(s): Yiming LONG   
Issue Date: 18 April 2016
 Cite this article:   
Wentian KUANG,Yiming LONG. Geometric characterizations for variational minimizing solutions of charged 3-body problems[J]. Front. Math. China, 2016, 11(2): 309-321.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0514-2
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I2/309
1 Arnold V I.Mathematical Methods of Classical Mechanics. Berlin: Springer, 1978
https://doi.org/10.1007/978-1-4757-1693-1
2 Coti Zelati V. Periodic solutions for N-body type problems. Ann IHP Analyse non linéaire, 1990, 7(5): 477–492
3 Gordon W. A minimizing property of Keplerian orbits. Amer J Math, 1977, 99(5): 961–971
https://doi.org/10.2307/2373993
4 Hardy G, Littlewood J, Pólya G. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952
5 Long Y. Lectures on Celestial Mechanics and Variational Methods. Preprint. 2012
6 Long Y, Zhang S. Geometric characterizations for variational minimization solutions of the 3-body problem. Acta Math Sin (Engl Ser), 2000, 16: 579–592
https://doi.org/10.1007/s101140000007
7 Meyer K, Hall G. Introduction to Hamiltonian Systems and the N-body Problems. Berlin: Springer, 1992
https://doi.org/10.1007/978-1-4757-4073-8
8 Moeckel R. On central configurations. Math Z, 1990, 205: 499–517
https://doi.org/10.1007/BF02571259
9 Perez-Chavela E, Saari D G, Susin A, Yan Z. Central configurations in the charged three body problem. Contemp Math, 1996, 198: 137–154
https://doi.org/10.1090/conm/198/02495
10 Rabinowitz P, Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184
https://doi.org/10.1002/cpa.3160310203
11 Zhou Q, Long Y. Equivalence of linear stabilities of elliptic triangle solutions of the planar charged and classical three-body problems. J Differential Equations, 2015, 258: 3851–3879
https://doi.org/10.1016/j.jde.2015.01.045
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed