Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (4) : 901-920    https://doi.org/10.1007/s11464-016-0564-5
RESEARCH ARTICLE
Complete cohomology for complexes with finite Gorenstein AC-projective dimension
Jiangsheng HU1,2,Yuxian GENG2,*(),Qinghua JIANG3
1. School of Mathematics Sciences, Nanjing Normal University, Nanjing 210046, China
2. School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
3. School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250014, China
 Download: PDF(219 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study complete cohomology of complexes with finite Gorenstein AC-projective dimension. We show first that the class of complexes admitting a complete level resolution is exactly the class of complexes with finite Gorenstein AC-projective dimension. This lets us give some general techniques for computing complete cohomology of complexes with finite Gorenstein ACprojective dimension. As a consequence, the classical relative cohomology for modules of finite Gorenstein AC-projective dimension is extended. Finally, the relationships between projective dimension and Gorenstein AC-projective dimension for complexes are given.

Keywords Gorenstein AC-projective      complete level resolution      complete cohomology     
Corresponding Author(s): Yuxian GENG   
Issue Date: 30 August 2016
 Cite this article:   
Jiangsheng HU,Yuxian GENG,Qinghua JIANG. Complete cohomology for complexes with finite Gorenstein AC-projective dimension[J]. Front. Math. China, 2016, 11(4): 901-920.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0564-5
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I4/901
1 Asadollahi J, Salarian Sh. Cohomology theories for complexes. J Pure Appl Algebra, 2007, 210: 771–787
https://doi.org/10.1016/j.jpaa.2006.11.014
2 Avramov L L, Foxby H-B. Homological dimensions of unbounded complexes. J Pure Appl Algebra, 1991, 71: 129–155
https://doi.org/10.1016/0022-4049(91)90144-Q
3 Avramov L L, Foxby H-B, Halperin S. Differential Graded Homological Algebra. Preprint, 2009
4 Avramov L L, Martsinkovsky A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc Lond Math Soc, 2002, 85: 393–440
https://doi.org/10.1112/S0024611502013527
5 Benson D J, Carlson J F. Products in negative cohomology. J Pure Appl Algebra, 1992, 82: 107–130
https://doi.org/10.1016/0022-4049(92)90116-W
6 Bravo D, Hovey M, Gillespie J. The stable module category of a general ring. arXiv:1405.5768
7 Butler M C R, Horrocks G. Classes of extensions and resolutions. Philos Trans R Soc Lond Ser A, 1961/1962, 254: 155–222
https://doi.org/10.1098/rsta.1961.0014
8 Cartan H, Eilenberg S. Homological Algebra. Princeton; Princeton Univ Press, 1956
9 Christensen L W. Gorenstein Dimensions. Lecture Notes in Math, Vol 1747. Berlin:Springer-Verlag, 2000
https://doi.org/10.1007/BFb0103980
10 Christensen L W, Foxby H-B, Holm H. Derived Category Methods in Commutative Algebra. Preprint, 2012
11 Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J Algebra, 2006, 302: 231–279
https://doi.org/10.1016/j.jalgebra.2005.12.007
12 Eilenberg S, Moore J C. Foundations of Relative Homological Algebra. Mem Amer Math Soc, No 55. Providence: Amer Math Soc, 1965
13 Eklof P, Trlifaj J. How to make Ext vanish. Bull Lond Math Soc, 2001, 33: 41–51
https://doi.org/10.1112/blms/33.1.41
14 Enochs E E, Jenda O M G. Gorenstein injective and projective modules. Math Z, 1995, 220: 611–633
https://doi.org/10.1007/BF02572634
15 Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000
https://doi.org/10.1515/9783110803662
16 Gillespie J. The flat model structure on Ch(R). Trans Amer Math Soc, 2004, 356:3369–3390
https://doi.org/10.1090/S0002-9947-04-03416-6
17 Gillespie J. Model structures on modules over Ding-Chen rings. Homology, Homotopy Appl, 2010, 12: 61–73
https://doi.org/10.4310/HHA.2010.v12.n1.a6
18 Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82:39–64
https://doi.org/10.1016/0022-4049(92)90009-5
19 Holm H. Gorenstein derived functors. Proc Amer Math Soc, 2004, 132: 1913–1923
https://doi.org/10.1090/S0002-9939-04-07317-4
20 Hovey M. Cotorsion pairs and model categories. Contemp Math, 2007, 436: 277–296
https://doi.org/10.1090/conm/436/08413
21 Hu J S, Ding N Q. A model structure approach to the Tate-Vogel cohomology. J Pure Appl Algebra, 2016, 220(6): 2240–2264
https://doi.org/10.1016/j.jpaa.2015.11.004
22 Mislin G. Tate cohomology for arbitrary groups via satellites. Topology Appl, 1994, 56: 293–300
https://doi.org/10.1016/0166-8641(94)90081-7
23 Salce L. Cotorsion theories for abelian groups. Symposia Math, 1979, 23: 11–32
24 Sather-Wagstaff S, Sharif T, White D. Gorenstein cohomology in abelian categories. J Math Kyoto Univ, 2008, 48: 571–596
25 Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14:403–428
https://doi.org/10.1007/s10468-009-9195-9
26 Veliche O. Gorenstein projective dimension for complexes. Trans Amer Math Soc, 2006, 358: 1257–1283
https://doi.org/10.1090/S0002-9947-05-03771-2
27 Yang G, Liu Z K. Cotorsion pairs and model structures on Ch(R). Proc Edinb Math Soc, 2011, 54: 783–797
https://doi.org/10.1017/S0013091510000489
28 Yang X Y, Ding N Q. On a question of Gillespie. Forum Math, 2015, 27(6): 3205–3231
https://doi.org/10.1515/forum-2013-6014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed