Clocconvergence," /> Clocconvergence,"/> Clocconvergence,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (3) : 597-606    https://doi.org/10.1007/s11464-016-0600-5
RESEARCH ARTICLE
Deformation of conic negative Kähler-Einstein manifolds
Yan LI()
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
 Download: PDF(148 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.

Keywords Conic Kähler-Einstein metric,      Clocconvergence')" href="#">Clocconvergence     
Corresponding Author(s): Yan LI   
Issue Date: 20 April 2017
 Cite this article:   
Yan LI. Deformation of conic negative Kähler-Einstein manifolds[J]. Front. Math. China, 2017, 12(3): 597-606.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0600-5
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I3/597
1 DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781
2 GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983
https://doi.org/10.1007/978-3-642-61798-0
3 GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978
4 GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947
5 GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57
https://doi.org/10.4310/jdg/1460463562
6 JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448
https://doi.org/10.5565/PUBLMAT_44200_04
7 KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418
8 RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296
https://doi.org/10.4310/jdg/1324477411
9 RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057
https://doi.org/10.1142/S0219199712500575
10 SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445
11 SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725
12 TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed