|
|
|
Deformation of conic negative Kähler-Einstein manifolds |
Yan LI( ) |
| School of Mathematical Sciences, Capital Normal University, Beijing 100048, China |
|
|
|
|
Abstract In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.
|
| Keywords
Conic Kähler-Einstein metric,
Cloc∞convergence')" href="#">convergence
|
|
Corresponding Author(s):
Yan LI
|
|
Issue Date: 20 April 2017
|
|
| 1 |
DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781
|
| 2 |
GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983
https://doi.org/10.1007/978-3-642-61798-0
|
| 3 |
GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978
|
| 4 |
GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947
|
| 5 |
GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57
https://doi.org/10.4310/jdg/1460463562
|
| 6 |
JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448
https://doi.org/10.5565/PUBLMAT_44200_04
|
| 7 |
KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418
|
| 8 |
RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296
https://doi.org/10.4310/jdg/1324477411
|
| 9 |
RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057
https://doi.org/10.1142/S0219199712500575
|
| 10 |
SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445
|
| 11 |
SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725
|
| 12 |
TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|