Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (4) : 805-819    https://doi.org/10.1007/s11464-017-0629-0
RESEARCH ARTICLE
Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices
Lei CHEN1,2, Shaochen WANG1,2()
1. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
2. School of Mathematics, South China University of Technology, Guangzhou 510640, China
 Download: PDF(277 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the asymptotic behavior for log-determinants of two unitary but non-Hermitian random matrices: the spherical ensembles A−1B, where A and B are independent complex Ginibre ensembles and the truncation of circular unitary ensembles. The corresponding Berry-Esseen bounds and Cramér type moderate deviations are established. Our method is based on the estimates of corresponding cumulants. Numerical simulations are also presented to illustrate the theoretical results.

Keywords Log-determinants      Berry-Esseen bounds      moderate deviations      spherical ensembles      circular unitary ensembles     
Corresponding Author(s): Shaochen WANG   
Issue Date: 06 July 2017
 Cite this article:   
Lei CHEN,Shaochen WANG. Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices[J]. Front. Math. China, 2017, 12(4): 805-819.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0629-0
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I4/805
1 AkemannG, BurdaZ. Universal microscopic correlation functions for products of independent Ginibre matrices. J Phys A, 2012, 45(46): 465201
https://doi.org/10.1088/1751-8113/45/46/465201
2 BaoZ G, PanG M, ZhouW. The logarithmic law of random determinant. Bernoulli, 2015, 21(3): 1600–1628
https://doi.org/10.3150/14-BEJ615
3 CaiT, LiangT Y, ZhouH. Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J Multivariate Anal, 2015, 137: 161–172
https://doi.org/10.1016/j.jmva.2015.02.003
4 ChenL, GaoF Q, WangS C. Berry-esseen bounds and Cramér type large deviations for eigenvalues of random matrices. Sci China Ser A, 2015, 58(9): 1959–1980
https://doi.org/10.1007/s11425-014-4948-2
5 DelannayR, Le CaërG. Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys Rev E, 2000, 62(2): 1526
https://doi.org/10.1103/PhysRevE.62.1526
6 DöringH, EichelsbacherP. Moderate deviations for the determinant of Wigner matrices. In: Limit Theorems in Probability, Statistics and Number Theory. Berlin: Springer, 2013, 253–275
https://doi.org/10.1007/978-3-642-36068-8_12
7 ForresterP J, MaysA. Pfaffian point process for the Gaussian real generalized eigenvalue problem. Probab Theory Related Fields, 2012, 154(1-2): 1–47
https://doi.org/10.1007/s00440-011-0361-8
8 GirkoV L. The central limit theorem for random determinants. Theory Probab Appl, 1980, 24(4): 729–740
https://doi.org/10.1137/1124086
9 GoodmanN R. The distribution of the determinant of a complex Wishart distributed matrix. Ann Math statist, 1963, 34(1): 178–180
https://doi.org/10.1214/aoms/1177704251
10 JiangH, WangS C. Cramér type moderate deviation and Berry-Esseen bound for the Log-determinant of sample covariance matrix. Preprint
11 JiangT F, QiY C. Spectral radii of large non-hermitian random matrices. J Theoret Probab, 2015, 1–39
12 KrishnapurM. From random matrices to random analytic functions. Ann Probab, 2009, 37(1): 314–346
https://doi.org/10.1214/08-AOP404
13 LebedevN N. Special Functions and their Applications. Englewood Cliffs: Prentice-Hall Inc, 1965
14 MezzadriF. How to generate random matrices from the classical compact groups. Notices Amer Math Soc, 2007, 54(5): 592–604
15 NguyenH, VuV. Random matrices: Law of the determinant. Ann Probab, 2014, 42(1): 146–167
https://doi.org/10.1214/12-AOP791
16 SaulisL, StatuleviciusV A. Limit Theorems for Large Deviations. New York: Springer, 1991
https://doi.org/10.1007/978-94-011-3530-6
17 TaoT, VuV. A central limit theorem for the determinant of a Wigner matrix. Adv Math, 2012, 231(1): 74–101
https://doi.org/10.1016/j.aim.2012.05.006
18 ZyczkowskiK. Truncations of random unitary matrices. J Phys A, 2000, 33(10): 2045
https://doi.org/10.1088/0305-4470/33/10/307
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Xiaocui MA, Fubao XI, Dezhi LIU. Moderate deviations for neutral functional stochastic differential equations driven by Levy noises[J]. Front. Math. China, 2020, 15(3): 529-554.
[3] Fuqing GAO, Qiaojing LIU. Moderate deviations for estimators under exponentially stochastic differentiability conditions[J]. Front. Math. China, 2018, 13(1): 25-40.
[4] Hui JIANG. Large and moderate deviations in testing Ornstein-Uhlenbeck process with linear drift[J]. Front. Math. China, 2016, 11(2): 291-307.
[5] Jun FAN, Fuqing GAO. Deviation inequalities and moderate deviations for estimators of parameters in TAR models[J]. Front Math Chin, 2011, 6(6): 1067-1083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed