Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (1) : 187-201    https://doi.org/10.1007/s11464-017-0665-9
RESEARCH ARTICLE
Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises
Suxin WANG1, Yiming JIANG2()
1. College of Sciences, Civil Aviation University of China, Tianjin 300300, China
2. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
 Download: PDF(269 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study a strongly elliptic partial differential operator with timevarying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the solution, we then obtain a kernel estimator of time-varying coefficient and the convergence rates. An example is given to illustrate the theorem.

Keywords Fractional white noise      elliptic partial differential operator      kernel estimator     
Corresponding Author(s): Yiming JIANG   
Issue Date: 12 January 2018
 Cite this article:   
Suxin WANG,Yiming JIANG. Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises[J]. Front. Math. China, 2018, 13(1): 187-201.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0665-9
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I1/187
1 Bally V, Pardoux E. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal, 1994, 9: 27–64
https://doi.org/10.1023/A:1008686922032
2 Bo L, Jiang Y, Wang Y. On a class of stochastic Anderson models with fractional noises. Stoch Anal Appl, 2008, 26(2): 270–287
https://doi.org/10.1080/07362990701857095
3 Bo L, Jiang Y,Wang Y. Stochastic Cahn-Hilliard equation with fractional noises. Stoch Dyn, 2008, 8(4): 643–665
https://doi.org/10.1142/S0219493708002500
4 De S. Stochastic models of population growth and spread. Bull Math Biol, 1987, 49: 1–11
https://doi.org/10.1007/BF02459957
5 Hu Y. Heat equation with fractional white noise potentials. Appl Math Optim, 2001, 43: 221–243
https://doi.org/10.1007/s00245-001-0001-2
6 Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist Probab Lett, 2010, 80: 1030–1038
https://doi.org/10.1016/j.spl.2010.02.018
7 Huebner M, Lototsky S. Asymptotic analysis of a kernel estimator for parabolic SPDE’s with time-dependent coefficients. Ann Appl Probab, 2000, 10(4): 1246–1258
8 Huebner M, Lototsky S, Rozovskii B L. Asymptotic properties of an approximate maximum likelihood estimator for stochastic PDEs. In: Statistics and Control of Stochastic Processes: In honour of R. Sh. Liptser. Singapore: World Scientific, 1998, 139–155
9 Huebner M, Rozovskii B. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE’s. Probab Theory Related Fields, 1995, 103: 143–163
https://doi.org/10.1007/BF01204212
10 Jiang Y, Shi K, Wang Y. Large deviation principle for the fourth-order stochastic heat equations with fractional noises. Acta Math Sin (Engl Ser), 2010, 26: 89–106
https://doi.org/10.1007/s10114-010-7366-6
11 Jiang Y, Wei T, Zhou X. Stochastic generalized Burgers equations driven by fractional noises. J Differential Equations, 2012, 252(2): 1934–1961
https://doi.org/10.1016/j.jde.2011.07.032
12 Mann Jr J A,Woyczynski WA. Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys A, 2001, 291: 159–183
https://doi.org/10.1016/S0378-4371(00)00467-2
13 Nualart D. The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006
14 Nualart D, Ouknine Y. Regularization of quasilinear heat equations by a fractional noise. Stoch Dyn, 2004, 4(2): 201–221
https://doi.org/10.1142/S0219493704001012
15 Prakasa Rao B L S. Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion. Random Oper Stoch Equ, 2003, 11: 229–242
https://doi.org/10.1163/156939703771378581
16 Prakasa Rao B L S. Berry-Esseen bound for MLE for linear stochastic differential equations driven by fractional Brownian motion. J Korean Statist Soc, 2005, 34: 281–295
17 Reed M, Simon B. Methods of modern mathematical physics. New York: Academic Press, Inc, 1980
18 Safarov Y, Vassiliev D. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. Transl Math Monogr, Vol 155. Providence: Amer Math Soc, 1997
19 Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Theory Related Fields, 2003, 127: 186–204
https://doi.org/10.1007/s00440-003-0282-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed