|
|
Generating series of intersection numbers on Hilbert schemes of points |
Zhilan WANG1( ), Jian ZHOU2 |
1. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China 2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China |
|
|
Abstract We compute some generating series of integrals related to tautological bundles on Hilbert schemes of points on surfaces S[n], including the intersection numbers of two Chern classes of tautological bundles, and the Euler characteristics of Λ_yTS[n]. We also propose some related conjectures, including an equivariant version of Lehn’s conjecture.
|
Keywords
Hilbert scheme
tautological sheaf
intersection number
|
Corresponding Author(s):
Zhilan WANG
|
Issue Date: 30 September 2017
|
|
1 |
AtiyahM F, BottR. The moment map and equivariant cohomology. Topology, 1984, 23(1): 1–28
https://doi.org/10.1016/0040-9383(84)90021-1
|
2 |
BorisovL, LibgoberA. McKay correspondence for elliptic genera. Ann of Math, 2005, 1521–1569
https://doi.org/10.4007/annals.2005.161.1521
|
3 |
EllingsrudG, GöttscheL, LehnM. On the cobordism class of the Hilbert scheme of a surface. J Algebraic Geom, 2001, 10: 81–100
|
4 |
EllingsrudG, StrømmeS A. On the homology of the Hilbert scheme of points in the plane. Invent Math, 1987, 87(2): 343–352
https://doi.org/10.1007/BF01389419
|
5 |
GöttscheL. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math Ann, 1990, 286(1): 193–207
https://doi.org/10.1007/BF01453572
|
6 |
GöttscheL, SoergelW. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math Ann, 1993, 296(1): 235–245
https://doi.org/10.1007/BF01445104
|
7 |
IqbalA, NazirS, RazaZ, SaleemZ. Generalizations of Nekrasov-Okounkov identity. Ann Comb, 2012, 16(4): 745–753
https://doi.org/10.1007/s00026-012-0157-2
|
8 |
LehnM. Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent Math, 1999, 136(1): 157–207
https://doi.org/10.1007/s002220050307
|
9 |
LiJ, LiuK, ZhouJ. Topological string partition functions as equivariant indices. Asian J Math, 2006, 10(1): 81–114
https://doi.org/10.4310/AJM.2006.v10.n1.a6
|
10 |
LiuK, YanC, ZhouJ. Hirzebruch χy genera of the Hilbert schemes of surfaces by localization formula. Sci China Ser A-Math, 2002, 45(4):420–431
https://doi.org/10.1007/BF02872330
|
11 |
MacdonaldI G. Symmetric Functions and Hall Polynomials. Oxford: Oxford Univ Press, 1998
|
12 |
MarianA, OpreaD, PandharipandeR. Segre classes and Hilbert schemes of points. arXiv: 1507.00688
|
13 |
NakajimaH. Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann of Math, 1997, 145(2): 379–388
https://doi.org/10.2307/2951818
|
14 |
NakajimaH. Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, Vol 18. Providence: Amer Math Soc, 1999
|
15 |
SloaneN J. The On-line Encyclopedia of Integer Sequences.
|
16 |
TikhomirovA. Standard bundles on a Hilbert scheme of points on a surface. In: Tikhomirov A, Tyurin A, eds. Algebraic Geometry and its Applications: Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl 1992. Aspects of Mathematics, Vol 25. Wiesbaden: Vieweg+Teubner Verlag, 1994, 183–203
https://doi.org/10.1007/978-3-322-99342-7_16
|
17 |
VafaC, WittenE. A strong coupling test of S-duality. Nuclear Phys, 1994, 431(1): 3–77
https://doi.org/10.1016/0550-3213(94)90097-3
|
18 |
WangZ. Tautological Sheaves on Hilbert Schemes. Ph D Thesis. Tsinghua University, Beijing, 2014
|
19 |
19. Wang Z, Zhou J. Tautological sheaves on Hilbert schemes of points. J Algebraic Geom, 2014, 23(4): 669–692
https://doi.org/10.1090/S1056-3911-2014-00623-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|