Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1247-1264    https://doi.org/10.1007/s11464-017-0686-4
RESEARCH ARTICLE
Generating series of intersection numbers on Hilbert schemes of points
Zhilan WANG1(), Jian ZHOU2
1. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
 Download: PDF(211 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We compute some generating series of integrals related to tautological bundles on Hilbert schemes of points on surfaces S[n], including the intersection numbers of two Chern classes of tautological bundles, and the Euler characteristics of Λ_yTS[n]. We also propose some related conjectures, including an equivariant version of Lehn’s conjecture.

Keywords Hilbert scheme      tautological sheaf      intersection number     
Corresponding Author(s): Zhilan WANG   
Issue Date: 30 September 2017
 Cite this article:   
Zhilan WANG,Jian ZHOU. Generating series of intersection numbers on Hilbert schemes of points[J]. Front. Math. China, 2017, 12(5): 1247-1264.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0686-4
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1247
1 AtiyahM F, BottR. The moment map and equivariant cohomology. Topology, 1984, 23(1): 1–28
https://doi.org/10.1016/0040-9383(84)90021-1
2 BorisovL, LibgoberA. McKay correspondence for elliptic genera. Ann of Math, 2005, 1521–1569
https://doi.org/10.4007/annals.2005.161.1521
3 EllingsrudG, GöttscheL, LehnM. On the cobordism class of the Hilbert scheme of a surface. J Algebraic Geom, 2001, 10: 81–100
4 EllingsrudG, StrømmeS A. On the homology of the Hilbert scheme of points in the plane. Invent Math, 1987, 87(2): 343–352
https://doi.org/10.1007/BF01389419
5 GöttscheL. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math Ann, 1990, 286(1): 193–207
https://doi.org/10.1007/BF01453572
6 GöttscheL, SoergelW. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math Ann, 1993, 296(1): 235–245
https://doi.org/10.1007/BF01445104
7 IqbalA, NazirS, RazaZ, SaleemZ. Generalizations of Nekrasov-Okounkov identity. Ann Comb, 2012, 16(4): 745–753
https://doi.org/10.1007/s00026-012-0157-2
8 LehnM. Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent Math, 1999, 136(1): 157–207
https://doi.org/10.1007/s002220050307
9 LiJ, LiuK, ZhouJ. Topological string partition functions as equivariant indices. Asian J Math, 2006, 10(1): 81–114
https://doi.org/10.4310/AJM.2006.v10.n1.a6
10 LiuK, YanC, ZhouJ. Hirzebruch χy genera of the Hilbert schemes of surfaces by localization formula. Sci China Ser A-Math, 2002, 45(4):420–431
https://doi.org/10.1007/BF02872330
11 MacdonaldI G. Symmetric Functions and Hall Polynomials. Oxford: Oxford Univ Press, 1998
12 MarianA, OpreaD, PandharipandeR. Segre classes and Hilbert schemes of points. arXiv: 1507.00688
13 NakajimaH. Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann of Math, 1997, 145(2): 379–388
https://doi.org/10.2307/2951818
14 NakajimaH. Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, Vol 18. Providence: Amer Math Soc, 1999
15 SloaneN J. The On-line Encyclopedia of Integer Sequences.
16 TikhomirovA. Standard bundles on a Hilbert scheme of points on a surface. In: Tikhomirov A, Tyurin A, eds. Algebraic Geometry and its Applications: Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl 1992. Aspects of Mathematics, Vol 25. Wiesbaden: Vieweg+Teubner Verlag, 1994, 183–203
https://doi.org/10.1007/978-3-322-99342-7_16
17 VafaC, WittenE. A strong coupling test of S-duality. Nuclear Phys, 1994, 431(1): 3–77
https://doi.org/10.1016/0550-3213(94)90097-3
18 WangZ. Tautological Sheaves on Hilbert Schemes. Ph D Thesis. Tsinghua University, Beijing, 2014
19 19. Wang Z, Zhou J. Tautological sheaves on Hilbert schemes of points. J Algebraic Geom, 2014, 23(4): 669–692
https://doi.org/10.1090/S1056-3911-2014-00623-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed