Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (4) : 935-945    https://doi.org/10.1007/s11464-018-0675-2
RESEARCH ARTICLE
Solution structures of tensor complementarity problem
Xueyong WANG(), Haibin CHEN, Yiju WANG
School of Management Science, Qufu Normal University, Rizhao 276800, China
 Download: PDF(260 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce two new types of tensors called the strictly semi-monotone tensor and the range column Sufficient tensor and explore their structure properties. Based on the obtained results, we make a characterization to the solution of tensor complementarity problem.

Keywords Strictly semimonotone tensors      column sufficiency tensors      product invariance      permutation invariance     
Corresponding Author(s): Xueyong WANG   
Issue Date: 14 August 2018
 Cite this article:   
Xueyong WANG,Haibin CHEN,Yiju WANG. Solution structures of tensor complementarity problem[J]. Front. Math. China, 2018, 13(4): 935-945.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0675-2
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I4/935
1 Bai X, Huang Z,Wang Y. Global uniqueness and solvability for tensor complementarity problems. J Optim Theory Appl, 2016, 170: 1–13
https://doi.org/10.1007/s10957-016-0903-4
2 Bu C, Zhang X, Zhou J, Wang W, Wei Y. The inverse, rank and product of tensor. Linear Algebra Appl, 2014, 446: 269–280
https://doi.org/10.1016/j.laa.2013.12.015
3 Che M, Qi L, Wei Y. Positive definite tensors to nonlinear complementarity problems. J Optim Theory Appl, 2016, 168: 475–487
https://doi.org/10.1007/s10957-015-0773-1
4 Chen H, Chen Y, Li G, Qi L. A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer Linear Algebra Appl, 2017,
https://doi.org/10.1002/nla.2125
5 Chen H, Huang Z, Qi L. Copositivity detection of tensors: theory and algorithm. J Optim Theory Appl, 2017, 174: 746–761
https://doi.org/10.1007/s10957-017-1131-2
6 Chen H, Huang Z, Qi L. Copositive tensor detection and its applications in physics and hypergraphs. Comput Optim Appl, 2017,
https://doi.org/10.1007/s10589-017-9938-1
7 Chen H, Wang Y. On computing minimal H-eigenvalue of sign-structured tensors. Front Math China, 2017, 12(6): 1289–1302
https://doi.org/10.1007/s11464-017-0645-0
8 Chen H, Wang Y, Zhao H. A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse. Appl Math Comput, 2011, 218(8): 4012–4016
https://doi.org/10.1016/j.amc.2011.05.066
9 Cottle R, Pang J, Venkateswaran V. Sufficient matrices and linear complementarity problem. Linear Algebra Appl, 1989, 114-115: 231–249
https://doi.org/10.1016/0024-3795(89)90463-1
10 Facchinei F, Pang J. Finite Dimensional Variational Inequalities and Complementarity Problems.New York: Springer, 2003
11 Huang Z, Qi L. Formulating an n-person noncooperative game as a tensor complementarity problem. Comput Optim Appl, 2016, 66: 1–20
12 Jeyaraman I, Sivakumar C. Complementarity properties of singular M-matrices. Linear Algebra Appl, 2016, 510: 42–63
https://doi.org/10.1016/j.laa.2016.08.003
13 Kolda T, Bader B. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500
https://doi.org/10.1137/07070111X
14 Ling C, He H, Qi L. On the cone eigenvalue complementarity problem for higher-order tensor. Comput Optim Appl, 2016, 63: 1–26
https://doi.org/10.1007/s10589-015-9767-z
15 Luo Z, Qi L, Xiu N. The sparsest solutions to Z-tensor complementarity problem. Optim Lett, 2015, 11: 471–482
https://doi.org/10.1007/s11590-016-1013-9
16 Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301–316
https://doi.org/10.1007/s10107-007-0193-6
17 Qi L, Wang Y, Wu Ed X. D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math, 2008, 221: 150–157
https://doi.org/10.1016/j.cam.2007.10.012
18 Qi L, Yu G, Wu E. Higher order positive semi-definite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433
https://doi.org/10.1137/090755138
19 Song Y, Qi L. Tensor complementarity problem and semi-positive tensor. J Optim Theory Appl, 2016, 169(3): 1069–1078
https://doi.org/10.1007/s10957-015-0800-2
20 Song Y, Yu G. Properties of solution set of tensor complementarity problem. J Optim Theory Appl, 2016, 170: 85–96
https://doi.org/10.1007/s10957-016-0907-0
21 Wang G, Zhou G, Caccetta L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22(1): 187–198
https://doi.org/10.3934/dcdsb.2017009
22 Wang Y, Caccetta L, Zhou G. Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer Linear Algebra Appl, 2015, 22: 1059–1076
https://doi.org/10.1002/nla.1996
23 Wang Y, Liu W, Caccetta L, Zhou G. Parameter selection for nonnegative l1 matrix/tensor sparse decomposition. Oper Res Lett, 2015, 43: 423–426
https://doi.org/10.1016/j.orl.2015.06.005
24 Wang Y, Qi L, Luo S, Xu Y. An alternative steepest direction method for the optimization in evaluating geometric discord. Pac J Optim, 2014, 10: 137–149
25 Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601
https://doi.org/10.1002/nla.633
26 Wang Y, Zhang K, Sun H. Criteria for strong H-tensors. Front Math China, 2016, 11: 577–592
https://doi.org/10.1007/s11464-016-0525-z
27 Wang Y, Zhou G, Caccetta L. Nonsingular H-tensor and its criteria. J Ind Manag Optim, 2016, 12: 1173–1186
https://doi.org/10.3934/jimo.2016.12.1173
28 Zhang K, Wang Y. An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms. J Comput Appl Math, 2016, 305: 1–10
https://doi.org/10.1016/j.cam.2016.03.025
29 Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452
https://doi.org/10.1137/130915339
30 Zhang X, Ling C, Qi L. The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J Matrix Anal Appl, 2012, 33: 806–821
https://doi.org/10.1137/110835335
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed