|
|
Double Frobenius algebras |
Zhihua WANG1,2( ), Libin LI3 |
1. Department of Mathematics, Nanjing University, Nanjing 210093, China 2. Department of Mathematics, Taizhou College, Taizhou 225300, China 3. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract Some equivalent conditions for double Frobenius algebras to be strict ones are given. Then some examples of (strict or non-strict) double Frobenius algebras are presented. Finally, a sufficient and necessary condition for the trivial extension of a double Frobenius algebra to be a (strict) double Frobenius algebra is given.
|
Keywords
Double Frobenius algebra
bi-Frobenius algebra
trivial extension
|
Corresponding Author(s):
Zhihua WANG
|
Issue Date: 28 March 2018
|
|
1 |
Abrams L. Modules, comodules and cotensor products over Frobenius algebras. J Algebra, 1999, 219: 201–213
https://doi.org/10.1006/jabr.1999.7901
|
2 |
Chen Q G, Wang S H. Radford’s formula for generalized weak biFrobenius algebras. Rocky Mountain J Math, 2014, 44(2): 419–433
https://doi.org/10.1216/RMJ-2014-44-2-419
|
3 |
Doi Y. Substructures of bi-Frobenius algebras. J Algebra, 2002, 256: 568–582
https://doi.org/10.1016/S0021-8693(02)00143-6
|
4 |
Doi Y. Group-like algebras and their representations. Comm Algebra, 2010, 38(7): 2635–2655
https://doi.org/10.1080/00927870903399927
|
5 |
Doi Y, Takeuchi M. BiFrobenius algebras. Contemp Math, 2000, 267: 67–98
https://doi.org/10.1090/conm/267/04265
|
6 |
Etingof P, Gelaki S, Nikshych D, Ostrik V. Tensor Categories. Math Surveys Monogr, Vol 205. Providence: AMS, 2015
https://doi.org/10.1090/surv/205
|
7 |
Ferrer Santos W, Haim M. Radford’s formula for bi-Frobenius algebras and applications. Comm Algebra, 2008, 36(4): 1301–1310
https://doi.org/10.1080/00927870701863470
|
8 |
Haim M. Group-like algebras and Hadamard matrices. J Algebra, 2007, 308: 215–235
https://doi.org/10.1016/j.jalgebra.2006.06.005
|
9 |
Koppinen M. On algebras with two multiplications, including Hopf algebras and Bose-Mesner algebras. J Algebra, 1996, 182: 256–273
https://doi.org/10.1006/jabr.1996.0170
|
10 |
Lam T Y. Lectures on Modules and Rings. Grad Texts in Math, Vol 189. New York: Springer-Verlag, 1999
https://doi.org/10.1007/978-1-4612-0525-8
|
11 |
Lorenz M. Some applications of Frobenius algebras to Hopf algebras. Contemp Math, 2011, 537: 269–289
https://doi.org/10.1090/conm/537/10581
|
12 |
Wang Y H, Chen X W. Construct non-graded bi-Frobenius algebras via quivers. Sci China Ser A, 2007, 50(3): 450–456
https://doi.org/10.1007/s11425-007-2035-7
|
13 |
Wang Y H, Zhang P. Construct bi-Frobenius algebras via quivers. Tsukuba J Math, 2004, 28(1): 215–227
https://doi.org/10.21099/tkbjm/1496164722
|
14 |
Wang Z H, Li L B. On realization of fusion rings from generalized Cartan matrices. Acta Math Sin (Engl Ser), 2017, 33(3): 362–376
https://doi.org/10.1007/s10114-016-6088-9
|
15 |
Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr Represent Theory, 2014, 17(6): 1901–1924
https://doi.org/10.1007/s10468-014-9484-9
|
16 |
Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of non-nilpotent type. J Algebra, 2016, 449: 108–137
https://doi.org/10.1016/j.jalgebra.2015.11.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|