Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (2) : 399-415    https://doi.org/10.1007/s11464-018-0682-3
RESEARCH ARTICLE
Double Frobenius algebras
Zhihua WANG1,2(), Libin LI3
1. Department of Mathematics, Nanjing University, Nanjing 210093, China
2. Department of Mathematics, Taizhou College, Taizhou 225300, China
3. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
 Download: PDF(182 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Some equivalent conditions for double Frobenius algebras to be strict ones are given. Then some examples of (strict or non-strict) double Frobenius algebras are presented. Finally, a sufficient and necessary condition for the trivial extension of a double Frobenius algebra to be a (strict) double Frobenius algebra is given.

Keywords Double Frobenius algebra      bi-Frobenius algebra      trivial extension     
Corresponding Author(s): Zhihua WANG   
Issue Date: 28 March 2018
 Cite this article:   
Zhihua WANG,Libin LI. Double Frobenius algebras[J]. Front. Math. China, 2018, 13(2): 399-415.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0682-3
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I2/399
1 Abrams L. Modules, comodules and cotensor products over Frobenius algebras. J Algebra, 1999, 219: 201–213
https://doi.org/10.1006/jabr.1999.7901
2 Chen Q G, Wang S H. Radford’s formula for generalized weak biFrobenius algebras. Rocky Mountain J Math, 2014, 44(2): 419–433
https://doi.org/10.1216/RMJ-2014-44-2-419
3 Doi Y. Substructures of bi-Frobenius algebras. J Algebra, 2002, 256: 568–582
https://doi.org/10.1016/S0021-8693(02)00143-6
4 Doi Y. Group-like algebras and their representations. Comm Algebra, 2010, 38(7): 2635–2655
https://doi.org/10.1080/00927870903399927
5 Doi Y, Takeuchi M. BiFrobenius algebras. Contemp Math, 2000, 267: 67–98
https://doi.org/10.1090/conm/267/04265
6 Etingof P, Gelaki S, Nikshych D, Ostrik V. Tensor Categories. Math Surveys Monogr, Vol 205. Providence: AMS, 2015
https://doi.org/10.1090/surv/205
7 Ferrer Santos W, Haim M. Radford’s formula for bi-Frobenius algebras and applications. Comm Algebra, 2008, 36(4): 1301–1310
https://doi.org/10.1080/00927870701863470
8 Haim M. Group-like algebras and Hadamard matrices. J Algebra, 2007, 308: 215–235
https://doi.org/10.1016/j.jalgebra.2006.06.005
9 Koppinen M. On algebras with two multiplications, including Hopf algebras and Bose-Mesner algebras. J Algebra, 1996, 182: 256–273
https://doi.org/10.1006/jabr.1996.0170
10 Lam T Y. Lectures on Modules and Rings. Grad Texts in Math, Vol 189. New York: Springer-Verlag, 1999
https://doi.org/10.1007/978-1-4612-0525-8
11 Lorenz M. Some applications of Frobenius algebras to Hopf algebras. Contemp Math, 2011, 537: 269–289
https://doi.org/10.1090/conm/537/10581
12 Wang Y H, Chen X W. Construct non-graded bi-Frobenius algebras via quivers. Sci China Ser A, 2007, 50(3): 450–456
https://doi.org/10.1007/s11425-007-2035-7
13 Wang Y H, Zhang P. Construct bi-Frobenius algebras via quivers. Tsukuba J Math, 2004, 28(1): 215–227
https://doi.org/10.21099/tkbjm/1496164722
14 Wang Z H, Li L B. On realization of fusion rings from generalized Cartan matrices. Acta Math Sin (Engl Ser), 2017, 33(3): 362–376
https://doi.org/10.1007/s10114-016-6088-9
15 Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr Represent Theory, 2014, 17(6): 1901–1924
https://doi.org/10.1007/s10468-014-9484-9
16 Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of non-nilpotent type. J Algebra, 2016, 449: 108–137
https://doi.org/10.1016/j.jalgebra.2015.11.002
[1] Zhi CHENG. Trivial extension of Koszul algebras[J]. Front. Math. China, 2017, 12(5): 1045-1056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed