Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (3) : 525-534    https://doi.org/10.1007/s11464-018-0694-z
RESEARCH ARTICLE
Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation
Shou-Ting CHEN1, Wen-Xiu MA2,3,4()
1. School of Mathematics and Physical Science, Xuzhou Institute of Technology, Xuzhou 221008, China
2. Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
3. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
4. International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
 Download: PDF(779 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A (2+ 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specific presented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2+ 1)-dimensional nonlinear partial differential equations which possess lump solutions.

Keywords Symbolic computation      lump solution      soliton theory     
Corresponding Author(s): Wen-Xiu MA   
Issue Date: 11 June 2018
 Cite this article:   
Shou-Ting CHEN,Wen-Xiu MA. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation[J]. Front. Math. China, 2018, 13(3): 525-534.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0694-z
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I3/525
1 Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering.Cambridge: Cambridge Univ Press, 1991
https://doi.org/10.1017/CBO9780511623998
2 Caudrey P J. Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s. Philos Trans R Soc A Math Phys Eng Sci, 2011, 369: 1215–1227
3 Dong H H, Zhang Y, Zhang X E. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun Nonlinear Sci Numer Simul, 2016, 36: 354–365
https://doi.org/10.1016/j.cnsns.2015.12.015
4 Dorizzi B, Grammaticos B, Ramani A, Winternitz P. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J Math Phys, 1986, 27: 2848–2852
https://doi.org/10.1063/1.527260
5 Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond Ser A, 1996, 452: 223–234
https://doi.org/10.1098/rspa.1996.0013
6 Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. Phys Lett A, 1990, 147: 472–476
https://doi.org/10.1016/0375-9601(90)90609-R
7 Harun-Or-Roshid, Ali M Z. Lump solutions to a Jimbo-Miwa like equation. arXiv: 1611.04478
8 Hirota R. The Direct Method in Soliton Theory.New York: Cambridge Univ Press, 2004
https://doi.org/10.1017/CBO9780511543043
9 Ibragimov N H. A new conservation theorem. J Math Anal Appl, 2007, 333: 311–328
https://doi.org/10.1016/j.jmaa.2006.10.078
10 Imai K. Dromion and lump solutions of the Ishimori-I equation. Progr Theoret Phys, 1997, 98: 1013–1023
https://doi.org/10.1143/PTP.98.1013
11 Kaup D J. The lump solutions and the Bäcklund transformation for the threedimensional three-wave resonant interaction. J Math Phys, 1981, 22: 1176–1181
https://doi.org/10.1063/1.525042
12 Kofane T C, Fokou M, Mohamadou A, Yomba E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur Phys J Plus, 2017, 132: 465
https://doi.org/10.1140/epjp/i2017-11747-6
13 Konopelchenko B, Strampp W. The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Problems, 1991, 7: L17–L24
https://doi.org/10.1088/0266-5611/7/2/002
14 Li X Y, Zhao Q L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J Geom Phys, 2017, 121: 123–137
https://doi.org/10.1016/j.geomphys.2017.07.010
15 Li X Y, Zhao Q L, Li Y X, Dong H H. Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem. J Nonlinear Sci Appl, 2015, 8(5): 496–506
https://doi.org/10.22436/jnsa.008.05.05
16 Lin F H, Chen S T, Qu Q X, Wang J P, Zhou X W, Lü X. Resonant multiple wave solutions to a new (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle. Appl Math Lett, 2018, 78: 112–117
https://doi.org/10.1016/j.aml.2017.10.013
17 Lu C N, Fu C, Yang H W. Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified uid and conservation laws as well as exact solutions. Appl Math Comput, 2018, 327: 104–116
https://doi.org/10.1016/j.amc.2018.01.018
18 Lü X, Chen S T, Ma W X. Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam, 2016, 86: 523–534
https://doi.org/10.1007/s11071-016-2905-z
19 Lü X, Wang J P, Lin F H, Zhou X W. Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dynam, 2018, 91: 1249–1259
https://doi.org/10.1007/s11071-017-3942-y
20 Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dyn Syst, 2009, Suppl: 506–515
21 Ma W X. Bilinear equations, Bell polynomials and linear superposition principle. J Phys Conf Ser, 2013, 411: 012021
https://doi.org/10.1088/1742-6596/411/1/012021
22 Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379: 1975–1978
https://doi.org/10.1016/j.physleta.2015.06.061
23 Ma W X. Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int J Nonlinear Sci Numer Simul, 2016, 17: 355–359
https://doi.org/10.1515/ijnsns-2015-0050
24 Ma W X. Conservation laws by symmetries and adjoint symmetries. Discrete Contin Dyn Syst Ser S, 2018, 11: 707–721
25 Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950–959
https://doi.org/10.1016/j.camwa.2010.12.043
26 Ma W X, Qin Q Z, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam, 2016, 84: 923–931
https://doi.org/10.1007/s11071-015-2539-6
27 Ma W X, Yong X L, Zhang H Q. Diversity of interaction solutions to the (2+ 1)-dimensional Ito equation. Comput Math Appl, 2018, 75: 289–295
https://doi.org/10.1016/j.camwa.2017.09.013
28 Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753–1778
https://doi.org/10.1090/S0002-9947-04-03726-2
29 Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264: 2633–2659
https://doi.org/10.1016/j.jde.2017.10.033
30 Ma W X, Zhou Y, Dougherty R. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Internat J Modern Phys B, 2016, 30: 1640018
https://doi.org/10.1142/S021797921640018X
31 Manakov S V, Zakharov V E, Bordag L A, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63: 205–206
https://doi.org/10.1016/0375-9601(77)90875-1
32 Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons—The Inverse Scattering Method.New York: Consultants Bureau, 1984
33 Ray S S. On conservation laws by Lie symmetry analysis for (2+ 1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation. Comput Math Appl, 2017, 74: 1158–1165
https://doi.org/10.1016/j.camwa.2017.06.007
34 Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20: 1496–1503
https://doi.org/10.1063/1.524208
35 Tan W, Dai H P, Dai Z D, Zhong W Y. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana—J Phys, 2017, 89: 77
36 Tang Y N, Tao S Q, Qing G. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput Math Appl, 2016, 72: 2334–2342
https://doi.org/10.1016/j.camwa.2016.08.027
37 Triki H, Jovanoski Z, Biswas A. Shock wave solutions to the Bogoyavlensky-Konopelchenko equation. Indian J Phys, 2014, 88: 71–74
https://doi.org/10.1007/s12648-013-0380-7
38 Ünsal Ö, Ma W X. Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations. Comput Math Appl, 2016, 71: 1242–1247
https://doi.org/10.1016/j.camwa.2016.02.006
39 Wazwaz A-M, El-Tantawy S A. New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dynam, 2017, 87(4): 2457–2461
https://doi.org/10.1007/s11071-016-3203-5
40 Xu Z H, Chen H L, Dai Z D. Rogue wave for the (2+ 1)-dimensional Kadomtsev-Petviashvili equation. Appl Math Lett, 2014, 37: 34–38
https://doi.org/10.1016/j.aml.2014.05.005
41 Yang H W, Chen X, Guo M, Chen Y D. A new ZKCBO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property. Nonlinear Dynam, 2018, 91: 2019–2032
https://doi.org/10.1007/s11071-017-4000-5
42 Yang J Y, Ma W X. Lump solutions of the BKP equation by symbolic computation. Internat J Modern Phys B, 2016, 30: 1640028
https://doi.org/10.1142/S0217979216400282
43 Yang J Y, Ma W X. Abundant lump-type solutions of the Jimbo-Miwa equation in (3+ 1)-dimensions. Comput Math Appl, 2017, 73: 220–225
https://doi.org/10.1016/j.camwa.2016.11.007
44 Yang J Y, Ma W X. Abundant interaction solutions of the KP equation. Nonlinear Dynam, 2017, 89: 1539–1544
https://doi.org/10.1007/s11071-017-3533-y
45 Yang J Y, Ma W X, Qin Z Y. Mixed lump-soliton solutions of the BKP equation. East Asian J Appl Math, 2017
46 Yang J Y, Ma WX, Qin Z Y. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal Math Phys, 2017,
https://doi.org/10.1007/s13324-017-0181-9
47 Yu J P, Sun Y L. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dynam, 2017, 87: 2755–2763
https://doi.org/10.1007/s11071-016-3225-z
48 Zhang J B, Ma W X. Mixed lump-kink solutions to the BKP equation. Comput Math Appl, 2017, 74: 591–596
https://doi.org/10.1016/j.camwa.2017.05.010
49 Zhang Y, Dong H H, Zhang X E, Yang H W. Rational solutions and lump solutions to the generalized (3+ 1)-dimensional shallow water-like equation. Comput Math Appl, 2017, 73: 246–252
https://doi.org/10.1016/j.camwa.2016.11.009
50 Zhang Y, Sun S L, Dong H H. Hybrid solutions of (3+ 1)-dimensional Jimbo-Miwa equation. Math Probl Eng, 2017, 2017: Article ID 5453941
51 Zhao H Q, Ma W X. Mixed lump-kink solutions to the KP equation. Comput Math Appl, 2017, 74: 1399–1405
https://doi.org/10.1016/j.camwa.2017.06.034
52 Zhao Q L, Li X Y. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal Math Phys, 2016, 6: 237–254
https://doi.org/10.1007/s13324-015-0116-2
53 Zheng H C, Ma W X, Gu X. Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions. Appl Math Comput, 2013, 220: 226–234
https://doi.org/10.1016/j.amc.2013.06.019
[1] Sumayah BATWA, Wen-Xiu MA. Lump solutions to a generalized Hietarinta-type equation via symbolic computation[J]. Front. Math. China, 2020, 15(3): 435-450.
[2] Hui WANG, Shoufu TIAN, Tiantian ZHANG, Yi CHEN. Lump wave and hybrid solutions of a generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles[J]. Front. Math. China, 2019, 14(3): 631-643.
[3] Wen-Xiu MA. Interaction solutions to Hirota-Satsuma-Ito equation in (2+ 1)-dimensions[J]. Front. Math. China, 2019, 14(3): 619-629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed